Ampliación de árboles binarios

Representamos los árboles binarios mediante el tipo de dato

Una forma de ampliar un árbol binario es añadiendo un nuevo nivel donde
las nuevas hojas sean iguales a la suma de los valores de los nodos
desde el padre hasta llegar a la raíz (inclusives). Por ejemplo:

Definir la función

tal que (ampliaArbol a) es el árbol a ampliado en un nivel. Por
ejemplo,

Soluciones

Árbol de subconjuntos

Definir las siguientes funciones

tales que

  • (arbolSubconjuntos xs) es el árbol de los subconjuntos de xs. Por ejemplo.

  • (nNodosArbolSubconjuntos xs) es el número de nodos del árbol de xs. Por ejemplo

  • (sumaNNodos n) es la suma del número de nodos de los árboles de los subconjuntos de [1..k] para 1 <= k <= n. Por ejemplo,

Soluciones

Suma de las alturas de los nodos de un árbol

Las árboles binarios se pueden representar con el siguiente tipo

Por ejemplo, el árbol

se representa por

La altura de cada elemento del árbol es la máxima distancia a las hojas en su rama. Por ejemplo, en el árbol anterior, la altura de 1 es 3, la de 2 es 2, la de 3 es 1, la de 4 es 1 y la de 5 es 1.

Definir la función

tal que (sumaAlturas a) es la suma de las alturas de los elementos de a. Por ejemplo,

Soluciones

Nodos con máxima suma de hijos

Los árboles se pueden representar mediante el siguiente tipo de datos

Por ejemplo, los árboles

se representan por

Definir la función

tal que (nodosSumaMaxima a) es la lista de los nodos del árbol a cuyos hijos tienen máxima suma. Por ejemplo,

Soluciones

Árboles binarios completos

Un árbol binario completo es un árbol en el que cada nodo tiene cero o dos hijos. Por ejemplo, el primero de los siguientes árboles es un árbol binario completo pero los otros no lo son

Los árboles se pueden representar mediante el siguiente tipo de datos

Por ejemplo, los árboles los árboles anteriores se puede representar por

Definir la función

tal que (esBinarioCompleto a) se verifica si a es un árbol binario completo. Por ejemplo,

Soluciones

Máxima distancia en árbol

Los árboles binarios con valores en las hojas y en los nodos se definen por

Por ejemplo, el árbol

se puede representar por

La distancia entre un padre y un hijo en el árbol es el valor absoluto de la diferencia de sus valores. Por ejemplo, la distancia de 10 a 8 es 2 y de 1 a 6 es 5.

Definir la función

tal que (maximaDistancia a) es la máxima distancia entre un padre y un hijo del árbol a. Por ejemplo,

Soluciones

[schedule expon=’2018-02-05′ expat=»06:00″]

  • Las soluciones se pueden escribir en los comentarios hasta el 05 de febrero.
  • El código se debe escribir entre una línea con <pre lang=»haskell»> y otra con </pre>

[/schedule]

[schedule on=’2018-02-05′ at=»06:00″]

[/schedule]

Relación definida por un árbol

Los árboles binarios con valores en las hojas y en los nodos se definen por

Por ejemplo, el árbol

se pueden representar por

Un árbol binario define una relación binaria donde un elemento x está relacionado con y si x es el padre de y. Por ejemplo, la relación definida por el árbol anterior es [(10,8),(8,3),(8,5),(10,2),(2,2),(2,0)].

Definir la función

tal que (relacionDelArbol a) es la relación binaria definida por el árbol a. Por ejemplo,

Soluciones

Padres como sumas de hijos

Los árboles binarios con valores en las hojas y en los nodos se definen por

Por ejemplo, el árbol

se pueden representar por

Un árbol cumple la propiedad de la suma si el valor de cada nodo es igual a la suma de los valores de sus hijos. Por ejemplo, el árbol anterior cumple la propiedad de la suma.

Definir la función

tal que (propSuma a) se verifica si el árbol a cumple la propiedad de la suma. Por ejemplo,

Soluciones

Recorrido por niveles de árboles binarios

Los árboles binarios con valores en las hojas y en los nodos se definen por

Por ejemplo, el árbol

se pueden representar por

Definir la función

tal que (recorrido a) es el recorrido del árbol a por niveles desde la raíz a las hojas y de izquierda a derecha. Por ejemplo,

Soluciones

Suma de las hojas de mínimo nivel

Los árboles binarios con valores en las hojas y en los nodos se definen por

Por ejemplo, el árbol

se pueden representar por

En el árbol anterior, los valores de las hojas de menor nivel son 4, 6 y 7 cuya suma es 17.

Definir la función

tal que (suma a) es la suma de los valores de las hojas de menor nivel del árbol a. Por ejemplo,

Soluciones

Bosque de recorridos del autobús

En la librería Data.Tree se definen los árboles y los bosques como sigue

Se pueden definir árboles. Por ejemplo,

También se pueden definir bosques. Por ejemplo,

Se pueden dibujar los bosques con la función drawForest. Por ejemplo,

Usando la notación de los ejercicios anteriores para las subidas y bajadas en el autobús, definir la función

tal que (bosqueRecorridos n m) es el bosque cuyas ramas son los recorridos correctos en un autobús de capacidad n y usando m paradas. Por ejemplo,

en donde la última rama representa el recorrido [(2,0),(2,2),(2,2)].

Soluciones

Caminos minimales en un árbol numérico

En la librería Data.Tree se definen los árboles y los bosques como sigue

Se pueden definir árboles. Por ejemplo,

Y se pueden dibujar con la función drawTree. Por ejemplo,

Los mayores divisores de un número x son los divisores u tales que u > 1 y existe un v tal que 1 < v < u y u*v = x. Por ejemplo, los mayores divisores de 24 son 12, 8 y 6.

El árbol de los predecesores y mayores divisores de un número x es el árbol cuya raíz es x y los sucesores de cada nodo y > 1 es el conjunto formado por y-1 junto con los mayores divisores de y. Los nodos con valor 1 no tienen sucesores. Por ejemplo, el árbol de los predecesores y mayores divisores del número 6 es

Definir las siguientes funciones

tales que

  • (mayoresDivisores x) es la lista de los mayores divisores de x. Por ejemplo,

  • (arbol x) es el árbol de los predecesores y mayores divisores del número x. Por ejemplo,

  • (caminos x) es la lista de los caminos en el árbol de los predecesores y mayores divisores del número x. Por ejemplo,

  • (caminosMinimales x) es la lista de los caminos en de menor longitud en el árbol de los predecesores y mayores divisores del número x. Por ejemplo,

Soluciones

Suma de árboles por niveles

Los árboles binarios con valores enteros se pueden representar con el de tipo de dato algebraico

Por ejemplo, los árboles

se representan por

Definir la función

tal que (suma a) es la suma de todos los nodos a una distancia par de la raíz del árbol a menos la suma de todos los nodos a una distancia impar de la raíz. Por ejemplo,

ya que

Soluciones

Por 3 o más 5

El enunciado del problema Por 3 o más 5 de ¡Acepta el reto! es el siguiente

Cuenta la leyenda que un famoso matemático, tras aprender a sumar y multiplicar a la tierna edad de 3 años en apenas 5 días, se dio cuenta de que, empezando por 1, podía generar un montón de números sin más que multiplicar por 3 o sumar 5 a alguno de los que ya hubiera generado antes.

Por ejemplo, el 23 (edad a la que se casaría) lo obtuvo así: ((1 + 5) × 3) + 5
Por su parte el 77 (edad a la que tendría su primer bisnieto) lo consiguió: (((1 × 3 + 5) × 3) × 3) + 5

Por mucho que lo intentó, algunos números, sin embargo, resultaron ser imposibles de obtener, como por ejemplo el 5, el 7 o el 15.

Se dice que un número es generable si se puede escribir como una sucesión (quizá vacía) de multiplicaciones por 3 y sumas de 5 al número 1.

Definir las siguientes funciones

tales que

  • generables es la sucesión de los números generables. Por ejemplo,

  • (generable x) se verifica si x es generable. Por ejemplo,

  • (arbolGenerable x) es el árbol de los números generables menores o iguales a x. Por ejemplo,

Soluciones

Números cubifinitos

El enunciado del problema Números cubifinitos de ¡Acepta el reto! es el siguiente

Se dice que un número es cubifinito cuando al elevar todos sus dígitos al cubo y sumarlos el resultado o bien es 1 o bien es un número cubifinito.

Por ejemplo, el número 1243 es cubifinito, pues al elevar todos sus dígitos al cubo obtenemos 100 que es cubifinito.

Por su parte, el 513 no es cubifinito, pues al elevar al cubo sus dígitos conseguimos el 153 que nunca podrá ser cubifinito, pues la suma de los cubos de sus dígitos vuelve a dar 153.

Definir las funciones

tales que

  • (esCubifinito n) se verifica si n es un número cubifinito. Por ejemplo,

  • (grafica n) dibuja la gráfica de la sucesión de los primeros n números cubifinitos. Por ejemplo, al evaluar (grafica 50) se dibuja
    Numeros_cubifinitos

Soluciones

Caminos minimales en un arbol numérico

En la librería Data.Tree se definen los árboles y los bosques como sigue

Se pueden definir árboles. Por ejemplo,

Y se pueden dibujar con la función drawTree. Por ejemplo,

Los mayores divisores de un número x son los divisores u tales que u > 1 y existe un v tal que 1 < v < u y u*v = x. Por ejemplo, los mayores divisores de 24 son 12, 8 y 6.

El árbol de los predecesores y mayores divisores de un número x es el árbol cuya raíz es x y los sucesores de cada nodo y > 1 es el conjunto formado por y-1 junto con los mayores divisores de y. Los nodos con valor 1 no tienen sucesores. Por ejemplo, el árbol de los predecesores y mayores divisores del número 6 es

Definir las siguientes funciones

tales que

  • (mayoresDivisores x) es la lista de los mayores divisores de x. Por ejemplo,

  • (arbol x) es el árbol de los predecesores y mayores divisores del número x. Por ejemplo,

  • (caminos x) es la lista de los caminos en el árbol de los predecesores y mayores divisores del número x. Por ejemplo,

  • (caminosMinimales x) es la lista de los caminos en de menor longitud en el árbol de los predecesores y mayores divisores del número x. Por ejemplo,

Soluciones

Caminos en un árbol binario con suma dada

Los árboles binarios se pueden representar con el de tipo de dato algebraico

Por ejemplo, los árboles

se representan por

Definir las funciones

tales que

  • (caminos a) es la lista de los caminos entre dos nodos cualesquiera del árbol a. Por ejemplo,

  • (caminosSuma a k) es la lista de los caminos entre dos nodos cualesquiera del árbol a cuya suma es k. Por ejemplo,

Soluciones

Referencia

Basado en Print all k-sum paths in a binary tree de GeeksforGeeks.

Caminos desde la raíz en un árbol binario

Los árboles binarios se pueden representar con el de tipo de dato algebraico

Por ejemplo, los árboles

se representan por

Definir la función

tal que (caminosDesdeRaiz a) es la lista de las caminosDesdeRaiz desde la raíz de a hasta cualquiera de sus nodos. Por ejemplo.

Soluciones

Sustitución en una posición

Los árboles binarios se pueden representar con el de dato algebraico

Por ejemplo, los árboles

se pueden representar por

Para indicar las posiciones del árbol se define el tipo

donde

representa un movimiento hacia la derecha (D) o a la izquierda. Por ejemplo, las posiciones de los elementos del ej1 son

Definir la función

tal que (sustitucion ds z x) es el árbol obtenido sustituyendo el elemento de x en la posición ds por z. Por ejemplo,

Soluciones

Nodos con k sucesores

Los árboles se pueden representar mediante el siguiente tipo de datos

Por ejemplo, los árboles

se representan por

Definir la función

tal que (nodos k x) es la lista de los nodos del árbol x que tienen k sucesores. Por ejemplo,

Soluciones

Mínima suma de las ramas de un árbol

Los árboles se pueden representar mediante el siguiente tipo de datos

Por ejemplo, los árboles

se representan por

Definir la función

tal que (minimaSuma a) es el mínimo de las sumas de las ramas del árbol a. Por ejemplo,

Soluciones

Distancia a Erdős

Una de las razones por la que el matemático húngaro Paul Erdős es conocido es por la multitud de colaboraciones que realizó durante toda su carrera, un total de 511. Tal es así que se establece la distancia a Erdős como la distancia que has estado de coautoría con Erdős. Por ejemplo, si eres Paul Erdős tu distancia a Erdős es 0, si has escrito un artículo con Erdős tu distancia es 1, si has escrito un artículo con alguien que ha escrito un artículo con Erdős tu distancia es 2, etc. El objetivo de este problema es definir una función que a partir de una lista de pares de coautores y un número natural n calcular la lista de los matemáticos a una distancia n de Erdős.

Para el problema se considerará la siguiente lista de coautores

La lista anterior es real y se ha obtenido del artículo Famous trails to Paul Erdős.

Definir la función

tal que (numeroDeErdos xs n) es la lista de lista de los matemáticos de la
lista de coautores xs que se encuentran a una distancia n de Erdős. Por ejemplo,

Nota: Este ejercicio ha sido propuesto por Enrique Naranjo.

Soluciones

Mínimo número de operaciones para transformar un número en otro

Se considera el siguiente par de operaciones sobre los números:

  • multiplicar por dos
  • restar uno.

Dados dos números x e y se desea calcular el menor número de operaciones para transformar x en y. Por ejemplo, el menor número de operaciones para transformar el 4 en 7 es 2:

y el menor número de operaciones para transformar 2 en 5 es 4

Definir las siguientes funciones

tales que

  • (arbolOp x n) es el árbol de profundidad n obtenido aplicándole a x las dos operaciones. Por ejemplo,

  • (minNOp x y) es el menor número de operaciones necesarias para transformar x en y. Por ejemplo,

Soluciones

Referencias

Basado en el artículo Minimum number of operation required to
convert number x into y
de Vipin Khushu en
GeeksforGeeks.

Máxima ramificación

Los árboles se pueden representar mediante el siguiente tipo de datos

Por ejemplo, los árboles

se representan por

En el primer ejemplo la máxima ramificación es 2 (en el nodo 1 que tiene 2 hijos), la del segundo es 3 (en el nodo 3 que tiene 3 hijos) y la del tercero es 3 (en el nodo 3 que tiene 3 hijos).

Definir la función

tal que (maximaRamificacion a) es la máxima ramificación del árbol a. Por ejemplo,

Soluciones

Anotación de la profundidad de los nodos

Los árboles binarios con datos en los nodos y hojas se definen por

Por ejemplo, el árbol

se representa por

Anotando cada elemento del árbol anterior con su profundidad, se obtiene el árbol siguiente

Definir la función

tal que (anotado x) es el árbol obtenido anotando los elementos de x con su profundidad. Por ejemplo,

Soluciones

De árboles a listas

Los árboles binarios con datos en nodos y hojas se definen por

Por ejemplo, el árbol

se representa por

Definir la función

tal que (sucesores t) es la lista de los pares formados por los elementos del árbol t junto con sus sucesores. Por ejemplo,

Soluciones

Paridad de un árbol

Los árboles binarios con valores en las hojas y en los nodos se definen por

Por ejemplo, el árbol

se puede representar por

Decimos que un árbol binario es par si la mayoría de sus valores (en nodos u hojas) son pares e impar en caso contrario.

Para representar la paridad se define el tipo Paridad

Definir la función

tal que (paridad a) es la paridad del árbol a. Por ejemplo,

Soluciones

Subárboles monovalorados

Los árboles binarios con valores enteros se pueden representar mediante el tipo Arbol definido por

Por ejemplo, el árbol

se puede representar por

Un árbol es monovalorado si todos sus elementos son iguales. Por ejemplo, de los siguientes árboles sólo son monovalorados los dos primeros

Definir la función

tal que (monovalorados a) es la lista de los subárboles monovalorados de a. Por ejemplo,

Soluciones

Ramas a las que pertenece un elemento

Representamos los árboles binarios con elementos en las hojas y en los nodos mediante el tipo de dato

Por ejemplo,

Definir la función

tal que (ramasCon a x) es la lista de las ramas del árbol a en las que aparece el elemento x. Por ejemplo,

Soluciones

Caminos maximales en árboles binarios

Consideremos los árboles binarios con etiquetas en las hojas y en los nodos. Por ejemplo,

Un camino es una sucesión de nodos desde la raiz hasta una hoja. Por ejemplo, [5,2] y [5,4,1,2] son caminos que llevan a 2, mientras que [5,4,1] no es un camino, pues no lleva a una hoja.

Definimos el tipo de dato Arbol y el ejemplo por

Definir la función

tal que (maxLong x a) es la longitud máxima de los caminos que terminan en x. Por ejemplo,

Soluciones