Árboles con todas sus ramas con algún elemento que cumple una propiedad

En lógica temporal, la expresión AFp significa que en algún momento en el futuro se cumple la propiedad p. Trasladado a su interpretación en forma de árbol lo que quiere decir es que en todas las ramas (desde la raíz hasta una hoja) hay un nodo que cumple la propiedad p.

Consideramos el siguiente tipo algebraico de los árboles binarios:

y el siguiente árbol

En este árbol se cumple (AF par); es decir, en todas las ramas hay un número par; pero no se cumple (AF primo); es decir, hay ramas en las que no hay ningún número primo. Donde una rama es la secuencia de nodos desde el nodo inicial o raíz hasta una hoja.

Definir la función

tal que (propiedadAF p a) se verifica si se cumple (AF p) en el árbol a; es decir, si en todas las ramas hay un nodo (interno u hoja) que cumple la propiedad p. Por ejemplo

Soluciones

[schedule expon=’2015-03-26′ expat=»06:00″]

Cociente entero de polinomios

El cociente entero de un polinomio P(x) por un monomio axⁿ es el polinomio que se obtiene a partir de los términos de P(x) con un grado mayor o igual que n, realizando la división entera entre sus coeficientes y el coeficiente del monomio divisor y restando el valor de n al de sus grados. Por ejemplo,

  • El cociente entero de 4x⁴ + 6x³ + 7x² + 5x + 2 por el monomio 3x² se obtiene a partir de los términos 4x⁴ + 6x³ + 7x² realizando la división entera entre sus coeficientes y el número 3 y restando 2 a sus grados. De esta forma se obtiene x² + 2x + 2
  • El cociente entero de 6x⁵ + 2x⁴ + 8x³ + 5x² + 8x + 4 por el monomio 4x³ se obtiene a partir de los términos 6x⁵ + 2x⁴ + 8x³ realizando la división entera entre sus coeficientes y el número 4 y restando 3 a sus grados. De esta forma se obtiene x² + 2

Definir la función

tal que (cocienteEntero p a n) es el cociente entero del polinomio p por el monomio de grado n y coeficiente a. Por ejemplo,

Nota: Este ejercicio debe realizarse usando únicamente las funciones de la librería I1M.Pol que se encuentra aquí y se describe aquí.

Soluciones

Sucesión de números parientes

Se dice que dos números naturales son parientes sitienen exactamente un factor primo en común, independientemente de su multiplicidad. Por ejemplo,

  • Los números 12 (2²·3) y 40 (2³·5) son parientes, pues tienen al 2 como único factor primo en común.
  • Los números 49 (7²) y 63 (3²·7) son parientes, pues tienen al 7 como único factor primo en común.
  • Los números 12 (2²·3) y 30 (2·3·5) no son parientes, pues tienen dos factores primos en común.
  • Los números 49 (7²) y 25 (5²) no son parientes, pues no tienen factores primos en común.

Se dice que una lista de números naturales es una secuencia de parientes si cada par de números consecutivos son parientes. Por ejemplo,

  • La lista [12,40,35,28] es una secuencia de parientes.
  • La lista [12,30,21,49] no es una secuencia de parientes.

Definir la función

tal que (secuenciaParientes xs) se verifica si xs es una secuencia de parientes. Por ejemplo,

Soluciones

Números como sumas de primos consecutivos

En el artículo Integers as a sum of consecutive primes in 2,3,4,.. ways se presentan números que se pueden escribir como sumas de primos consecutivos de varias formas. Por ejemplo, el 41 se puede escribir de dos formas distintas

el 240 se puede escribir de tres formas

y el 311 se puede escribir de 4 formas

Definir la función

tal que (sumas x) es la lista de las formas de escribir x como suma de dos o más números primos consecutivos. Por ejemplo,

Soluciones

Actualización de una lista

Definir la función

tal que (actualiza xs ps) es la lista obtenida sustituyendo en xs los elementos cuyos índices son las primeras componentes de ps por las segundas. Por ejemplo,

Soluciones