Sucesiones alícuotas

La sucesión alícuota de un número x es la sucesión cuyo primer término es x y cada otro término es la suma de los divisores propios del término anterior. Por ejemplo, la sucesión alícuota de 10 es [10,8,7,1,0,0,0] ya que

Definir la función

tal que (sucAlicuota x) es la sucesión alícuota de x. Por ejemplo,

Soluciones

Precisión de aproximaciones de pi

La precisión de una aproximación x de pi es el número de dígitos comunes entre el inicio de x y de pi. Por ejemplo, puesto que 355/113 es 3.1415929203539825 y pi es 3.141592653589793, la precisión de 355/113 es 7.

Definir las siguientes funciones

tales que

  • (mayorPrefijoComun xs ys) es el mayor prefijo común de xs e ys. Por ejemplo,

  • (precisionPi x) es la precisión de la aproximación de pi x. Por ejemplo,

  • (precisionPiCR x) es la precisión de la aproximación de pi x, como números reales. Por ejemplo,

Nota: Para la definición precisionPiCR se usa la librería Data.Number.CReal que se instala con

Soluciones

Cálculo de pi mediante el método de Newton

El método de Newton para el cálculo de pi se basa en la relación
Calculo_de_pi_mediante_el_metodo_de_Newton_1
y en el desarrollo del arco seno
Calculo_de_pi_mediante_el_metodo_de_Newton_2
de donde se obtiene la fórmula
Calculo_de_pi_mediante_el_metodo_de_Newton_3

La primeras aproximaciones son

Definir las funciones

tales que

  • (aproximacionPi n) es la n-ésima aproximación de pi con la fórmula de Newton. Por ejemplo,

  • (grafica xs) dibuja la gráfica de las k-ésimas aproximaciones de pi donde k toma los valores de la lista xs. Por ejemplo, (grafica [1..30]) dibuja
    Calculo_de_pi_mediante_el_metodo_de_Newton_4

Nota: Este ejercicio ha sido propuesto por Manuel Herrera.

Soluciones

Cálculo de pi mediante los métodos de Gregory-Leibniz y de Beeler

La fórmula de Gregory-Leibniz para calcular pi es
Calculo_de_pi_mediante_los_metodos_de_Gregory-Leibniz_y_de_Beeler_1
y la de Beeler es
Calculo_de_pi_mediante_los_metodos_de_Gregory-Leibniz_y_de_Beeler_2

Definir las funciones

tales que

  • (aproximaPiGL n) es la aproximación de pi con los primeros n términos de la fórmula de Gregory-Leibniz. Por ejemplo,

  • (aproximaPiBeeler n) es la aproximación de pi con los primeros n términos de la fórmula de Beeler. Por ejemplo,

  • (graficas xs) dibuja la gráfica de las k-ésimas aproximaciones de pi, donde k toma los valores de la lista xs, con las fórmulas de Gregory-Leibniz y de Beeler. Por ejemplo, (graficas [1..25]) dibuja
    Calculo_de_pi_mediante_los_metodos_de_Gregory-Leibniz_y_de_Beeler_3
    donde la línea morada corresponde a la aproximación de Gregory-Leibniz y la verde a la de Beeler.

Nota: Este ejercicio ha sido propuesto por Enrique Naranjo.

Soluciones

Cálculo de pi mediante la variante de Euler de la serie armónica

En el artículo El desarrollo más bello de Pi como suma infinita, Miguel Ángel Morales comenta el desarrollo de pi publicado por Leonhard Euler en su libro «Introductio in Analysis Infinitorum» (1748).

El desarrollo es el siguiente
Calculo_de_pi_mediante_la_variante_de_Euler_de_la_serie_armonica_1
y se obtiene a partir de la serie armónica
Calculo_de_pi_mediante_la_variante_de_Euler_de_la_serie_armonica_2
modificando sólo el signo de algunos términos según el siguiente criterio:

  • Dejamos un + cuando el denominador de la fracción sea un 2 o un primo de la forma 4m-1.
  • Cambiamos a – si el denominador de la fracción es un primo de la forma 4m+1.
  • Si el número es compuesto ponemos el signo que quede al multiplicar los signos correspondientes a cada factor.

Por ejemplo,

  • la de denominador 3 = 4×1-1 lleva un +,
  • la de denominador 5 = 4×1+1 lleva un -,
  • la de denominador 13 = 4×3+1 lleva un -,
  • la de denominador 6 = 2×3 lleva un + (porque los dos llevan un +),
  • la de denominador 10 = 2×5 lleva un – (porque el 2 lleva un + y el 5 lleva un -) y
  • la de denominador 50 = 5x5x2 lleva un + (un – por el primer 5, otro – por el segundo 5 y un + por el 2).

Definir las funciones

tales que

  • (aproximacionPi n) es la aproximación de pi obtenida sumando los n primeros términos de la serie de Euler. Por ejemplo.

  • (grafica n) dibuja la gráfica de las aproximaciones de pi usando k sumando donde k toma los valores de la lista [100,110..n]. Por ejemplo, al evaluar (grafica 4000) se obtiene
    Calculo_de_pi_mediante_la_variante_de_Euler_de_la_serie_armonica_3.png

Nota: Este ejercicio ha sido propuesto por Paula Macías.

Soluciones