Subconjuntos acotados

Definir la función

tal que (subconjuntosAcotados xs k) es la lista de los subconjuntos de xs con k elementos como máximo. Por ejemplo,

Soluciones

Variación de la conjetura de Goldbach

La conjetura de Goldbach afirma que

Todo número entero mayor que 5 se puede escribir como suma de tres números primos.

En este ejercicio consideraremos la variación consistente en exigir que los tres sumandos sean distintos.

Definir las funciones

tales que

  • (sumas3PrimosDistintos n) es la lista de las descomposiciones decrecientes de n como tres primos distintos. Por ejemplo,

  • (conKsumas3PrimosDistintos k n) es la lista de los números menores o iguales que n que se pueden escribir en k forma distintas como suma de tres primos distintos. Por ejemplo,

  • (noSonSumas3PrimosDistintos n) es la lista de los números menores o iguales que n que no se pueden escribir como suma de tres primos distintos. Por ejemplo,

Soluciones

Referencias

Basado en el artículo Derivaciones de la conjetura de Goldbach de Claudio Meller en el blog Números y algo más.

Primo anterior

Definir la función

tal que (primoAnterior n) es el mayor primo menor que n (donde n > 2). Por ejemplo,

Calcular el menor número cuya distancia a su primo anterior es mayor que 40.

Soluciones

Primos de Kamenetsky

Un número primo se dice que es un primo de Kamenetsky si al anteponerlo cualquier dígito se obtiene un número compuesto. Por ejemplo, el 5 es un primo de Kamenetsky ya que 15, 25, 35, 45, 55, 65, 75, 85 y 95 son compuestos. También lo es 149 ya que 1149, 2149, 3149, 4149, 5149, 6149, 7149, 8149 y 9149 son compuestos.

Definir la sucesión

tal que sus elementos son los números primos de Kamenetsky. Por ejemplo,

Soluciones

Referencias

Números de Harshad hereditarios

Un número de Harshad es un entero divisible entre la suma de sus dígitos. Por ejemplo, 201 es un número de Harshad porque es divisible por 3 (la suma de sus dígitos). Cuando se elimina el último dígito de 201 se obtiene 20 que también es un número de Harshad. Cuando se elimina el último dígito de 20 se obtiene 2 que también es un número de Harshad. Los números como el 201 que son de Harshad y que los números obtenidos eliminando sus últimos dígitos siguen siendo de Harshad se llaman números de Harshad hereditarios por la derecha. Definir la función

tal que (numeroHHD n) se verifica si n es un número de Harshad hereditario por la derecha. Por ejemplo,

Calcular el mayor número de Harshad hereditario por la derecha con tres dígitos.

Soluciones

Triángulos geométricos

Un triángulo geométrico es un triángulo de lados enteros, representados por la terna (a,b,c) tal que a ≤ b ≤ c y están en progresión geométrica, es decir, b^2 = a*c. Por ejemplo, un triángulo de lados a = 144, b = 156 y c = 169.

Definir la función

tal que (numeroTG n) es el número de triángulos geométricos de perímetro menor o igual que n. Por ejemplo

Nota: Los triángulos geométricos de perímetro menor o igual que 20 son

Se observa que (1,2,4) aunque cumple que 1+2+4 <= 20 y 2^2 = 1*4 no pertenece a la lista ya que 1+2 > 4 y, por tanto, no hay ningún triángulo cuyos lados midan 1, 2 y 4.

Soluciones

Referencia

El ejercicio está basado en el problema 370 del proyecto Euler.

Caminos en una retícula

El problema de los caminos en una retícula consiste en, dada una retícula rectangular con m filas y n columnas, determinar todos los caminos para ir desde el vértice inferior izquierdo hasta el vértice superior derecho donde los movimientos permitidos son mover hacia el siguiente vértice a la derecha o arriba.

Por ejemplo, en la siguiente retícula un posible camino es el indicado en rojo.
C

Para representar los caminos se definen los siguientes tipos de datos:

Por tanto, el camino de la figura anterior se representa por la lista [D,D,A,D,A].

Definir las funciones

tales que

  • (caminos m n) es la lista de los caminos en una retícula rectangular con m filas y n columnas. Por ejemplo,

  • (nCaminos m n) es el número de los caminos en una retícula rectangular con m filas y n columnas. Por ejemplo,

Soluciones

Centro de gravedad de una lista

Se dice que una lista de números xs es equilibrada si existe una posición k tal que la suma de los elementos de xs en las posiciones menores que k es igual a la de los elementos de xs en las posiciones mayores que k. La posición k se llama el centro de gravedad de xs. Por ejemplo, la lista [1,3,4,5,-2,1] es equilibrada, y su centro de gravedad es 2, ya que la suma de [1,3] es igual a la de [5,-2,1]. En cambio, la lista [1,6,4,5,-2,1] no tiene centro de gravedad.

Definir la función

tal que (centro xs) es justo el centro e gravedad de xs, si la lista xs es equilibrada y Nothing en caso contrario. Por ejemplo,

Soluciones

Sucesión duplicadora

Para cada entero positivo n, existe una única sucesión que empieza en 1, termina en n y en la que cada uno de sus elementos es el doble de su anterior o el doble más uno. Dicha sucesión se llama la sucesión duplicadora de n. Por ejemplo, la sucesión duplicadora de 13 es [1, 3, 6, 13], ya que

Definir la función

tal que (duplicadora n) es la sucesión duplicadora de n. Por ejemplo,

Soluciones

Problema de las puertas

Un hotel dispone de n habitaciones y n camareros. Los camareros tienen la costumbre de cambiar de estado las puestas (es decir, abrir las cerradas y cerrar las abiertas). El proceso es el siguiente:

  • Inicialmente todas las puertas están cerradas.
  • El primer camarero cambia de estado las puertas de todas las habitaciones.
  • El segundo cambia de estado de las puertas de las habitaciones pares.
  • El tercero cambia de estado todas las puertas que son múltiplos de 3.
  • El cuarto cambia de estado todas las puertas que son múltiplos de 4
  • Así, hasta que ha pasado el último camarero.

Por ejemplo, para n = 5

Los estados de las puertas se representan por el siguiente tipo de datos

Definir la función

tal que (final n) es la lista de los estados de las n puertas después
de que hayan pasado los n camareros. Por
ejemplo,

Soluciones

Densidad de números no monótonos

Un número entero positivo se dice que es

  • creciente si cada uno de sus dígitos es menor o igual que el que está a su derecha; por ejemplo, 134479.
  • decreciente si cada uno de sus dígitos es menor o igual que el que está a su derecha; por ejemplo, 664210.
  • no monótono si no es creciente ni decreciente; por ejemplo, 155369.

Para cada entero positivo n, la densidad números no monótonos hasta n es el cociente entre la cantidad de n números no monótonos entre menores o iguales que n y el número n. Por ejemplo, hasta 150 hay 19 números no monótonos (101, 102, 103, 104, 105, 106, 107, 108, 109, 120, 121, 130, 131, 132, 140, 141, 142, 143 y 150); por tanto, la densidad hasta 150 es 19/150 = 0.12666667

Definir las siguientes funciones

tales que

  • (densidad n) es la densidad de números no monótonos hasta n. Por ejemplo,

  • (menorConDensidadMayor x) es el menor número n tal que la densidad de números no monótonos hasta n es mayor o igual que x. Por ejemplo,

Soluciones

Número de divisiones en el algoritmo de Euclides

Dados dos números naturales, a y b, es posible calcular su máximo común divisor mediante el Algoritmo de Euclides. Este algoritmo se puede resumir en la siguiente fórmula:

Definir la función

tal que (mcdYdivisiones a b) es el número de divisiones usadas en el cálculo del máximo común divisor de a y b mediante el algoritmo de Euclides. Por ejemplo,

ya que los 4 divisiones del cálculo son

Comprobar con QuickCheck que el número de divisiones requeridas por el algoritmo de Euclides para calcular el MCD de a y b es igual o menor que cinco veces el número de dígitos de menor de los números a y b.

Soluciones

Expresiones aritmética normalizadas

El siguiente tipo de dato representa expresiones construidas con variables, sumas y productos

Por ejemplo, x.(y+z) se representa por (P (V «x») (S (V «y») (V «z»)))

Una expresión es un término si es un producto de variables. Por ejemplo, x.(y.z) es un término pero x+(y.z) ni x.(y+z) lo son.

Una expresión está en forma normal si es una suma de términos. Por ejemplo, x.(y,z) y x+(y.z) está en forma normal; pero x.(y+z) y (x+y).(x+z) no lo están.

Definir las funciones

tales que

  • (esTermino a) se verifica si a es un término. Por ejemplo,

  • (esNormal a) se verifica si a está en forma normal. Por ejemplo,

Soluciones

Mínimo número de cambios para igualar una lista

Definir la función

tal que (nMinimoCambios xs) es el menor número de elementos de xs que hay que cambiar para que todos sean iguales. Por ejemplo,

En el primer ejemplo, los elementos que hay que cambiar son 5, 7, 9 y 6.

Soluciones

Productos simultáneos de dos y tres números consecutivos

Definir la función

tal que (productos n x) es las listas de n elementos consecutivos cuyo producto es x. Por ejemplo,

Comprobar con QuickCheck que si n > 0 y x > 0, entonces

Usando productos, definir la función

cuyos elementos son los números naturales (no nulos) que pueden expresarse simultáneamente como producto de dos y tres números consecutivos. Por ejemplo,

Nota. Según demostró Mordell en 1962, productosDe2y3consecutivos sólo tiene dos elementos.

Soluciones

Mínima diferencia entre elementos de una lista

Definir la función

tal que (minimaDiferencia xs) es el menor valor absoluto de las diferencias entre todos los pares de elementos de xs (que se supone que tiene al menos 2 elementos). Por ejemplo,

En el primer ejemplo la menor diferencia es 1 y se da entre los elementos 19 y 18; en el 2ª es 4 entre los elementos 5 y 9 y en la 3ª es 0 porque el elemento 5 está repetido.

Soluciones

Raíz entera

Definir la función

tal que (raizEnt x n) es la raíz entera n-ésima de x; es decir, el mayor número entero y tal que y^n <= x. Por ejemplo,

Comprobar con QuickCheck que para todo número natural n,

Soluciones

Soluciones en Maxima

Inverso multiplicativo modular

El inverso multiplicativo modular de un entero n módulo p es el número m, entre 1 y p-1, tal que

Por ejemplo, el inverso multiplicativo de 2 módulo 5 es 3, ya que 1 <= 3 <= 4 y 2×3 = 1 (mod 5).

El inverso multipicativo de n módulo p existe si y sólo si n y p son coprimos; es decir, si mcd(n,p) = 1.

Definir la función

tal que (invMod n p) es justo el inverso multiplicativo de n módulo p, si existe y Nothing en caso contrario. Por ejemplo,

Soluciones

Solución en Maxima

La evaluación de los ejemplos es

Referencia

Números cuyos dígitos coinciden con los de sus factores primos

Un número n es especial si al unir los dígitos de sus factores primos, se obtienen exactamente los dígitos de n, aunque puede ser en otro orden. Por ejemplo, 1255 es especial, pues los factores primos de 1255 son 5 y 251.

Definir la función

tal que (esEspecial n) se verifica si un número n es especial. Por ejemplo,

Comprobar con QuickCheck que todo número primo es especial.

Calcular los 5 primeros números especiales que no son primos.

Soluciones

Evaluación de expresiones aritméticas

Las expresiones aritméticas se pueden definir mediante el siguiente tipo de dato

Por ejemplo, (x+3)+(7*y) se representa por

Definir la función

tal que (valor e) es ‘Just v’ si la expresión e es numérica y v es su valor, o bien ‘Nothing’ si e no es numérica. Por ejemplo:

Soluciones

Posiciones de máximos locales

Los vectores se definen usando tablas como sigue:

Un elemento de un vector es un máximo local si no tiene ningún elemento adyacente mayor o igual que él.

Definir la función

tal que (posMaxVec p) devuelve las posiciones del vector p en las que p tiene un máximo local. Por ejemplo,

Soluciones

Máxima suma de elementos consecutivos

Definir la función

tal que (sumaMaxima xs) es el valor máximo de la suma de elementos consecutivos de la lista xs. Por ejemplo,

Comprobar con QuickCheck que

Soluciones

Rotación de una matriz

En la siguiente figura, al rotar girando 90 grados en el sentido del reloj la matriz de la izquierda, obtenemos la de la derecha

Definir la función

tal que (rota p) es la matriz obtenida girando en el sentido del reloj la matriz cuadrada p. Por ejemplo,

Soluciones

Mayor sección inicial sin repetidos

Definir la función

tal que (seccion xs) es el mayor sección inicial de xs que no contiene ningún elemento repetido. Por ejemplo:

Soluciones

Primo suma de dos cuadrados

Definir la sucesión

cuyos elementos son los números primos que se pueden escribir como sumas de dos cuadrados. Por ejemplo,

En el ejemplo anterior,

  • 13 está en la sucesión porque es primo y 13 = 2²+3².
  • 11 no está en la sucesión porque no se puede escribir como suma de dos cuadrados (en efecto, 11-1=10, 11-2²=7 y 11-3²=2 no son cuadrados).
  • 20 no está en la sucesión porque, aunque es suma de dos cuadrados (20=4²+2²), no es primo.

Soluciones

Referencias

Paridad del número de divisores

Definir la función

tal que (nDivisoresPar n) se verifica si n tiene un número par de divisores. Por ejemplo,

Soluciones

Solución en Maxima

Máxima longitud de las sublistas comunes

Las sublistas comunes de «1325» y «36572» son «», «3»,»32″, «35», «2» y «5». El máximo de sus longitudes es 2.

Definir la función

tal que (maximo xs ys) es el máximo de las longitudes de las sublistas comunes de xs e ys. Por ejemplo,

Soluciones

Elemento ausente

Sea xs una lista y n su longitud. Se dice que xs es casi completa si sus elementos son los números enteros entre 0 y n excepto uno. Por ejemplo, la lista [3,0,1] es casi completa.

Definir la función

tal que (ausente xs) es el único entero (entre 0 y la longitud de xs) que no pertenece a la lista casi completa xs. Por ejemplo,

Soluciones

Menor no expresable como suma

Definir la función

tal que (menorNoSuma xs) es el menor número que no se puede escribir como suma de un subconjunto de xs, donde se supone que xs es un conjunto de números enteros positivos. Por ejemplo,

Comprobar con QuickCheck que para todo n,

Soluciones

Números N cuyos cuadrados tienen dos copias de cada dígito de N

La sucesión A114258 de la OEIS está formada por los números n tales que el número de ocurrencia de cada dígito d de n en n² es el doble del número de ocurrencia de d en n. Por ejemplo, 72576 es un elemento de A114258 porque tiene un 2, un 5, un 6 y dos 7 y su cuadrado es 5267275776 que tiene exactamente dos 2, dos 5, dos 6 y cuatro 7.

Un número es especial si pertenece a la sucesión A114258.

Definir la sucesión

cuyos elementos son los números especiales. Por ejemplo,

Soluciones

En Maxima