Conmutaciones ondulantes

Una lista binaria es ondulante si sus elementos son alternativamente 0 y 1. Por ejemplo, las listas [0,1,0,1,0] y [1,0,1,0] son ondulantes.

Definir la función

tal que (minConmutacionesOndulante xs) es el mínimo número de conmutaciones (es decir, cambios de 0 a 1 o de 1 a 0) necesarias para transformar xs en una lista ondulante. Por ejemplo,

En el primer ejemplo basta conmutar el elemento en la posición 1 para obtener [1,0,1] y el segundo ejemplo los elementos en las posiciones 1 y 8 para obtener [0,1,0,1,0,1,0,1,0,1].

Soluciones

Números de Dudeney

La semana pasada, Pepe Muñoz Santonja publicó en su blog Algo más que números el artículo Números de Dudeney en la base OEIS

Un número de Dudeney es un número entero n tal que el cubo de la suma de sus dígitos es igual a n. Por ejemplo, 512 es un número de Dudeney ya que (5+1+2)^3 = 8^3 = 512.

Se puede generalizar variando el exponente: Un número de Dudeney de orden k es un número entero n tal que la potencia k-ésima de la suma de sus dígitos es igual a n. Por ejemplo, 2401 es un número de Dudeney de orden 4 ya que (2+4+0+1)^4 = 7^4 = 2401.

Definir la función

tal que (numerosDudeney k) es la lista de los números de Dudeney oe orden k. Por ejemplo,

Comprobar con QuickCheck que 19683 es el mayor número de Dudeney de orden 3.

Soluciones

Máximo producto en la partición de un número

El artículo de esta semana de Antonio Roldán en su blog Números y hoja de cálculo es Máximo producto en la partición de un número (1)

Una partición de un entero positivo n es una forma de descomponer n como suma de enteros positivos. Dos sumas se considerarán iguales si solo difieren en el orden de los sumandos. Por ejemplo, las 11 particiones de 6 (con sus correspondientes productos) son

Se observa que el máximo producto de las particiones de 6 es 9.

Definir la función

tal que (maximoProductoParticiones n) es el máximo de los productos de las particiones de n. Por ejemplo,

Comprobar con QuickChek que los únicos posibles factores de (maximoProductoParticiones n) son 2 y 3.

Soluciones

Referencia

Conjetura de Rassias

El artículo de esta semana del blog Números y hoja de cálculo está dedicado a la Conjetura de Rassias. Dicha conjetura afirma que

Para cada número primo p > 2 existen dos primos a y b, con a < b, tales que
(p-1)a = b+1

Dado un primo p > 2, los pares de Rassia de p son los pares de primos (a,b), con a < b, tales que (p-1)a = b+1. Por ejemplo, (2,7) y (3,11) son pares de Rassia de 5 ya que

  • 2 y 7 son primos, 2 < 7 y (5-1)·2 = 7+1
  • 3 y 11 son primos, 3 < 11 y (5-1)·3 = 11+1

Definir las siguientes funciones

tales que

  • (paresRassias p) es la lista de los pares de Rassias del primo p (que se supone que es mayor que 2). Por ejemplo,

  • (conjeturaRassia x) se verifica si para todos los primos menores que x (y mayores que 2) se cumple la conjetura de Rassia. Por ejemplo,

Soluciones

Referencias

Sucesiones de listas de números

En la Olimpiada Internacional de Matemáticas del 2012 se propuso el siguiente problema:

Varios enteros positivos se escriben en una lista. Iterativamente, Alicia elige dos números adyacentes x e y tales que x > y y x está a la izquierda de y y reemplaza el par (x,y) por (y+1,x) o (x-1,x). Demostrar que sólo puede aplicar un número finito de dichas iteraciones.

Por ejemplo, las transformadas de la lista [1,3,2] son [1,2,3] y [1,3,3] y las dos obtenidas son finales (es decir, no se les puede aplicar ninguna transformación).

Definir las funciones

tales que

  • (soluciones xs) es la lista de pares (n,ys) tales que ys es una lista obtenida aplicándole n transformaciones a xs. Por ejemplo,

  • (finales xs) son las listas obtenidas transformando xs y a las que no se les puede aplicar más transformaciones. Por ejemplo,

  • (finalesMaximales xs) es el par (n,yss) tal que la longitud de las cadenas más largas de transformaciones a partir de xs e yss es la lista de los estados finales a partir de xs con n transformaciones. Por ejemplo,

Soluciones

Particiones de longitud fija

Definir la función

tal que (particionesFijas n k) es la lista de listas de k números naturales no crecientes cuya suma es n. Por ejemplo,

Soluciones

Problema de las jarras

En el problema de las jarras (A,B,C) se tienen dos jarras sin marcas de medición, una de A litros de capacidad y otra de B. También se dispone de una bomba que permite llenar las jarras de agua.

El problema de las jarras (A,B,C) consiste en determinar cómo se puede lograr tener exactamente C litros de agua en la jarra de A litros de capacidad.

Definir, mediante búsqueda en espacio de estados, la función

tal (jarras (a,b,c)) es la lista de las soluciones del problema de las
jarras (a,b,c). Por ejemplo,

La interpretación [(0,0),(4,0),(1,3),(1,0),(0,1),(4,1),(2,3)] es:

  • (0,0) se inicia con las dos jarras vacías,
  • (4,0) se llena la jarra de 4 con el grifo,
  • (1,3) se llena la de 3 con la de 4,
  • (1,0) se vacía la de 3,
  • (0,1) se pasa el contenido de la primera a la segunda,
  • (4,1) se llena la primera con el grifo,
  • (2,3) se llena la segunda con la primera.

Otros ejemplos

Nota: Las librerías necesarias se encuentran en la página de códigos.

Soluciones

Problema del dominó

Las fichas del dominó se pueden representar por pares de números enteros. El problema del dominó consiste en colocar todas las fichas de una lista dada de forma que el segundo número de cada ficha coincida con el primero de la siguiente.

Definir, mediante búsqueda en espacio de estados, la función

tal que (domino fs) es la lista de las soluciones del problema del dominó correspondiente a las fichas fs. Por ejemplo,

Nota: Las librerías necesarias se encuentran en la página de códigos.

Soluciones

Juego de bloques con letras

Para el juego de los bloques se dispone de un conjunto de bloques con una letra en cada una de sus dos caras. El objetivo del juego consiste en formar palabras sin que se pueda usar un bloque más de una vez y sin diferenciar mayúsculas de minúsculas. Por ejemplo, si se tiene tres bloques de forma que el 1º tiene las letras A y B, el 2ª la N y la O y el 3º la O y la A entonces se puede obtener la palabra ANA de dos formas: una con los bloques 1, 2 y 3 y otra con los 3, 2 y 1.

Definir la función

tal que (soluciones bs cs) es la lista de las soluciones del juego de los bloque usando los bloques bs (cada bloque es una cadena de dos letras mayúsculas) para formar la palabra cs. Por ejemplo,

Soluciones

Sucesión fractal

La sucesión fractal

está construida de la siguiente forma:

  • los términos pares forman la sucesión de los números naturales

  • los términos impares forman la misma sucesión original

Definir las funciones

tales que

  • sucFractal es la lista de los términos de la sucesión fractal. Por ejemplo,

  • (sumaSucFractal n) es la suma de los n primeros términos de la sucesión fractal. Por ejemplo,

Soluciones

Referencia

Conjuntos de primos emparejables

Un conjunto de primos emparejables es un conjunto S de números primos tales que al concatenar cualquier par de elementos de S se obtiene un número primo. Por ejemplo, {3, 7, 109, 673} es un conjunto de primos emparejables ya que sus elementos son primos y las concatenaciones de sus parejas son 37, 3109, 3673, 73, 7109, 7673, 1093, 1097, 109673, 6733, 6737 y 673109 son primos.

Definir la función

tal que (emparejables n m) es el conjunto de los conjuntos emparejables de n elementos menores que n. Por ejemplo,

Soluciones

Cadenas de divisores

Una cadena de divisores de un número n es una lista donde cada elemento es un divisor de su siguiente elemento en la lista. Por ejemplo, las cadenas de divisores de 12 son [2,4,12], [2,6,12], [2,12], [3,6,12], [3,12], [4,12], [6,12] y [12].

Definir la función

tal que (cadenasDivisores n) es la lista de las cadenas de divisores de n. Por ejemplo,

Soluciones

Referencias

Período de una lista

El período de una lista xs es la lista más corta ys tal que xs se puede obtener concatenando varias veces la lista ys. Por ejemplo, el período «abababab» es «ab» ya que «abababab» se obtiene repitiendo tres veces la lista «ab».

Definir la función

tal que (periodo xs) es el período de xs. Por ejemplo,

Soluciones

Mezcla de infinitas listas infinitas

Definir la función

tal que (mezclaTodas xss) es la mezcla ordenada de xss, donde tanto xss como sus elementos son listas infinitas ordenadas. Por ejemplo,

Soluciones

Operaciones con series de potencias

Una serie de potencias es una serie de la forma

Las series de potencias se pueden representar mediante listas
infinitas. Por ejemplo, la serie de la función exponencial es

y se puede representar por [1, 1, 1/2, 1/6, 1/24, 1/120, …]

Las operaciones con series se pueden ver como una generalización de las de los polinomios.

En lo que sigue, usaremos el tipo (Serie a) para representar las series de potencias con coeficientes en a y su definición es

Definir las siguientes funciones

tales que

  • (opuesta xs) es la opuesta de la serie xs. Por ejemplo,

  • (suma xs ys) es la suma de las series xs e ys. Por ejemplo,

  • (resta xs ys) es la resta de las series xs es ys. Por ejemplo,

  • (producto xs ys) es el producto de las series xs e ys. Por ejemplo,

  • (cociente xs ys) es el cociente de las series xs e ys. Por ejemplo,

  • (derivada xs) es la derivada de la serie xs. Por ejemplo,

  • (integral xs) es la integral de la serie xs. Por ejemplo,

  • expx es la serie de la función exponencial. Por ejemplo,

Soluciones

Conflictos de horarios

Los horarios de los cursos se pueden representar mediante matrices donde las filas indican los curso, las columnas las horas de clase y el valor correspondiente al curso i y la hora j es verdadero indica que i tiene clase a la hora j.

En Haskell, podemos usar la matrices de la librería Data.Matrix y definir el tipo de los horarios por

Un ejemplo de horario es

en el que el 1º curso tiene clase a la 1ª y 2ª hora, el 2º a la 2ª y a la 3ª y el 3º a la 3ª y a la 4ª.

Definir la función

tal que (cursosConflictivos h is) se verifica para si los cursos de la lista is hay alguna hora en la que más de uno tiene clase a dicha hora. Por ejemplo,

Soluciones

Números como sumas de primos consecutivos

En el artículo Integers as a sum of consecutive primes in 2,3,4,.. ways se presentan números que se pueden escribir como sumas de primos consecutivos de varias formas. Por ejemplo, el 41 se puede escribir de dos formas distintas

el 240 se puede escribir de tres formas

y el 311 se puede escribir de 4 formas

Definir la función

tal que (sumas x) es la lista de las formas de escribir x como suma
de dos o más números primos consecutivos. Por ejemplo,

Soluciones

Caminos reducidos

Un camino es una sucesión de pasos en una de las cuatros direcciones Norte, Sur, Este, Oeste. Ir en una dirección y a continuación en la opuesta es un esfuerzo que se puede reducir, Por ejemplo, el camino [Norte,Sur,Este,Sur] se puede reducir a [Este,Sur].

Un camino se dice que es reducido si no tiene dos pasos consecutivos en direcciones opuesta. Por ejemplo, [Este,Sur] es reducido y [Norte,Sur,Este,Sur] no lo es.

En Haskell, las direcciones y los caminos se pueden definir por

Definir la función

tal que (reducido ds) es el camino reducido equivalente al camino ds. Por ejemplo,

Nótese que en el penúltimo ejemplo las reducciones son

Soluciones

Representación decimal de números racionales

Los números decimales se representan por ternas, donde el primer elemento es la parte entera, el segundo es el anteperíodo y el tercero es el período. Por ejemplo,

Su tipo es

Los números racionales se representan por un par de enteros, donde el primer elemento es el numerador y el segundo el denominador. Por ejemplo, el número 2/3 se representa por (2,3). Su tipo es

Definir las funciones

tales que

  • (decimal r) es la representación decimal del número racional r. Por ejemplo,

  • (racional d) es el número racional cuya representación decimal es d. Por ejemplo,

Con la función decimal se puede calcular los períodos de los números racionales. Por ejemplo,

Comprobar con QuickCheck si las funciones decimal y racional son inversas.

Soluciones

Comportamiento del último dígito en primos consecutivos

El pasado 11 de marzo se ha publicado el artículo Unexpected biases in the distribution of consecutive primes en el que muestra que los números primos repelen a otros primos que terminan en el mismo dígito.

La lista de los últimos dígitos de los 30 primeros números es

Se observa que hay 6 números que su último dígito es un 1 y de sus consecutivos 4 terminan en 3 y 2 terminan en 7.

Definir la función

tal que (distribucionUltimos n) es la matriz cuyo elemento (i,j) indica cuántos de los n primeros números primos terminan en i y su siguiente número primo termina en j. Por ejemplo,

Nota: Se observa cómo se «repelen» ya que en las filas del 1, 3, 7 y 9 el menor elemento es el de la diagonal.

Soluciones

Solución en Maxima

Máxima suma en una matriz

Las matrices puede representarse mediante tablas cuyos índices son pares de números naturales:

Definir la función

tal que (maximaSuma p) es el máximo de las sumas de las listas de elementos de la matriz p tales que cada elemento pertenece sólo a una fila y a una columna. Por ejemplo,

ya que las selecciones, y sus sumas, de la matriz

son

Hay dos selecciones con máxima suma: [2,8,7] y [3,8,6].

Soluciones

Número de islas rectangulares de una matriz

En este problema se consideran matrices cuyos elementos son 0 y 1. Los valores 1 aparecen en forma de islas rectangulares separadas por 0 de forma que como máximo las islas son diagonalmente adyacentes. Por ejemplo,

Definir la función

tal que (numeroDeIslas p) es el número de islas de la matriz p. Por ejemplo,

Soluciones

Particiones en sumas de cuadrados

Definir las funciones

tales que

  • (particionesCuadradas n) es la listas de conjuntos de cuadrados cuya suma es n. Por ejemplo,

  • (nParticionesCuadradas n) es el número de conjuntos de cuadrados cuya suma es n. Por ejemplo,

  • (graficaParticionesCuadradas n) dibuja la gráfica de la sucesión

Por ejemplo, con (graficaParticionesCuadradas 100) se obtiene

Particiones_en_sumas_de_cuadrados

Soluciones

Referencias

Sumas de potencias de 3 primos

Los primeros números de la forma p²+q³+r⁴, con p, q y r primos son

Definir la sucesión

cuyos elementos son los números que se pueden escribir de la forma p²+q³+r⁴, con p, q y r primos. Por ejemplo,

Soluciones

Múltiplos con ceros y unos

Se observa que todos los primeros números naturales tienen al menos un múltiplo no nulo que está formado solamente por ceros y unos. Por ejemplo, 1×10=10, 2×5=10, 3×37=111, 4×25=100, 5×2=10, 6×185=1110; 7×143=1001; 8X125=1000; 9×12345679=111111111.

Definir la función

tal que (multiplosCon1y0 n) es la lista de los múltiplos de n cuyos dígitos son 1 ó 0. Por ejemplo,

Comprobar con QuickCheck que todo entero positivo tiene algún múltiplo cuyos dígitos son 1 ó 0.

Soluciones

Sumas digitales de primos consecutivos

Definir la función

tal que (primosConsecutivosConSumasDigitalesPrimas k) es la sucesión de listas de k primos consecutivos tales que las sumas ordenadas de sus dígitos también son primos consecutivos. Por ejemplo,

Soluciones

Referencias

Basado en el artículo DigitSums of some consecutive primes del blog Fun With Num3ers.

Siembra de listas

Definir la función

tal que (siembra xs) es la lista ys obtenida al repartir cada elemento x de la lista xs poniendo un 1 en las x siguientes posiciones de la lista ys. Por ejemplo,

El tercer ejemplo se obtiene sumando la siembra de 4 en la posición 0 (como el ejemplo 1) y el 2 en la posición 1 (como el ejemplo 2). Otros ejemplos son

Comprobar con QuickCheck que la suma de los elementos de (siembra xs) es igual que la suma de los de xs.

Nota 1: Se supone que el argumento es una lista de números no negativos y que se puede ampliar tanto como sea necesario para repartir los elementos.

Nota 2: Este ejercicio es parte del examen del grupo 3 del 2 de diciembre.

Soluciones

Listas decrecientes

Definir la función

tal que (listasDecrecientesDesde n) es la lista de las sucesiones estrictamente decrecientes cuyo primer elemento es n. Por ejemplo,

Soluciones

Pandigitales tridivisibles

El número 4106357289 tiene la siguientes dos propiedades:

  • es pandigital, porque tiene todos los dígitos del 0 al 9 exactamente una vez y
  • es tridivisible, porque los sucesivos subnúmeros de tres dígitos (a partir del segundo) son divisibles por los sucesivos números primos; es decir, representado por d(i) el i-ésimo dígito, se tiene

Definir la constante

cuyos elementos son los números pandigitales tridivisibles. Por ejemplo,

Soluciones

Mayor producto de n números adyacentes en una matriz

Definir la función

tal que (mayorProductoAdyacentes n p) es la lista de los segmentos formados por n elementos adyacentes en la misma fila, columna o diagonal de la matriz p cuyo productos son máximo. Por ejemplo,

Soluciones