Representaciones de un número como potencia

El número 512 se puede escribir de tres maneras como potencias:

Definir las funciones

tales que

  • (potencias x) es la lista de las representaciones de x como potencias de números enteros positivos. Por ejemplo,

  • (numeroPotencias x) de las representaciones de x como potencias de números enteros positivos. Por ejemplo,

Soluciones

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Espirales

Definir la función

tal que (espiral n) es la espiral de orden n (es decir, con n filas y n columnas). Por ejemplo,

Nota: La serpiente (formada por los 1) nunca se puede tocar a ella misma.

Soluciones

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Mayor número borrando k dígitos

Definir la función

tal que (mayorBorrando k n) es el mayor número obtenido borrando k dígitos de n (se supone que n tiene más de k dígitos). Por ejemplo,

Soluciones

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Cambio con el menor número de monedas

El problema del cambio con el menor número de monedas consiste en, dada una lista ms de tipos de monedas (con infinitas monedas de cada tipo) y una cantidad objetivo x, calcular el menor número de monedas de ms cuya suma es x. Por ejemplo, con monedas de 1, 3 y 4 céntimos se puede obtener 6 céntimos de 4 formas

El menor número de monedas que se necesita es 2. En cambio, con monedas de 2, 5 y 10 es imposible obtener 3.

Definir

tal que (monedas ms x) es el menor número de monedas de ms cuya suma es x, si es posible obtener dicha suma y es Nothing en caso contrario. Por ejemplo,

Soluciones

Caminos en un grafo

Definir las funciones

tales que

  • (grafo as) es el grafo no dirigido definido cuyas aristas son as. Por ejemplo,

  • (caminos g a b) es la lista los caminos en el grafo g desde a hasta b sin pasar dos veces por el mismo nodo. Por ejemplo,

Soluciones

Espacio de estados del problema de las N reinas

El problema de las N reinas consiste en colocar N reinas en tablero rectangular de dimensiones N por N de forma que no se encuentren más de una en la misma línea: horizontal, vertical o diagonal. Por ejemplo, una solución para el problema de las 4 reinas es

Los estados del problema de las N reinas son los tableros con las reinas colocadas. Inicialmente el tablero está vacío y, en cda paso se coloca una reina en la primera columna en la que aún no hay ninguna reina.

Cada estado se representa por una lista de números que indican las filas donde se han colocado las reinas. Por ejemplo, el tablero anterior se representa por [2,4,1,3].

Usando la librería de árboles Data.Tree, definir las funciones

tales que

  • (arbolReinas n) es el árbol de estados para el problema de las n reinas. Por ejemplo,

  • (nEstados n) es el número de estados en el problema de las n reinas. Por ejemplo,

  • (soluciones n) es la lista de estados que son soluciones del problema de las n reinas. Por ejemplo,

  • (nSoluciones n) es el número de soluciones del problema de las n reinas. Por ejemplo,

Soluciones

Conjuntos de primos emparejables

Un conjunto de primos emparejables es un conjunto S de números primos tales que al concatenar cualquier par de elementos de S se obtiene un número primo. Por ejemplo, {3, 7, 109, 673} es un conjunto de primos emparejables ya que sus elementos son primos y las concatenaciones de sus parejas son 37, 3109, 3673, 73, 7109, 7673, 1093, 1097, 109673, 6733, 6737 y 673109 son primos.

Definir la función

tal que (emparejables n m) es el conjunto de los conjuntos emparejables de n elementos menores que n. Por ejemplo,

Conjetura de las familias estables por uniones

La conjetura de las familias estables por uniones fue planteada por Péter Frankl en 1979 y aún sigue abierta.

Una familia de conjuntos es estable por uniones si la unión de dos conjuntos cualesquiera de la familia pertenece a la familia. Por ejemplo, {∅, {1}, {2}, {1,2}, {1,3}, {1,2,3}} es estable por uniones; pero {{1}, {2}, {1,3}, {1,2,3}} no lo es.

La conjetura afirma que toda familia no vacía estable por uniones y distinta de {∅} posee algún elemento que pertenece al menos a la mitad de los conjuntos de la familia.

Definir las funciones

tales que

  • (esEstable f) se verifica si la familia f es estable por uniones. Por ejemplo,

  • (familiasEstables c) es el conjunto de las familias estables por uniones formadas por elementos del conjunto c. Por ejemplo,

  • (mayoritarios f) es la lista de elementos que pertenecen al menos a la mitad de los conjuntos de la familia f. Por ejemplo,

  • (conjeturaFrankl n) se verifica si para toda familia f formada por elementos del conjunto {1,2,…,n} no vacía, estable por uniones y distinta de {∅} posee algún elemento que pertenece al menos a la mitad de los conjuntos de f. Por ejemplo.

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Menor no expresable como suma

Definir la función

tal que (menorNoSuma xs) es el menor número que no se puede escribir como suma de un subconjunto de xs, donde se supone que xs es un conjunto de números enteros positivos. Por ejemplo,

Comprobar con QuickCheck que para todo n,

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Cálculo de pi mediante los métodos de Gregory-Leibniz y de Beeler

La fórmula de Gregory-Leibniz para calcular pi es
Calculo_de_pi_mediante_los_metodos_de_Gregory-Leibniz_y_de_Beeler_1
y la de Beeler es
Calculo_de_pi_mediante_los_metodos_de_Gregory-Leibniz_y_de_Beeler_2

Definir las funciones

tales que

  • (aproximaPiGL n) es la aproximación de pi con los primeros n términos de la fórmula de Gregory-Leibniz. Por ejemplo,

  • (aproximaPiBeeler n) es la aproximación de pi con los primeros n términos de la fórmula de Beeler. Por ejemplo,

  • (graficas xs) dibuja la gráfica de las k-ésimas aproximaciones de pi, donde k toma los valores de la lista xs, con las fórmulas de Gregory-Leibniz y de Beeler. Por ejemplo, (graficas [1..25]) dibuja
    Calculo_de_pi_mediante_los_metodos_de_Gregory-Leibniz_y_de_Beeler_3
    donde la línea morada corresponde a la aproximación de Gregory-Leibniz y la verde a la de Beeler.

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Números como sumas de primos consecutivos

En el artículo Integers as a sum of consecutive primes in 2,3,4,.. ways se presentan números que se pueden escribir como sumas de primos consecutivos de varias formas. Por ejemplo, el 41 se puede escribir de dos formas distintas

el 240 se puede escribir de tres formas

y el 311 se puede escribir de 4 formas

Definir la función

tal que (sumas x) es la lista de las formas de escribir x como suma de dos o más números primos consecutivos. Por ejemplo,

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

«El desarrollo de las matemáticas hacia una mayor precisión ha llevado, como es bien sabido, a la formalización de grandes partes de las mismas, de modo que se puede probar cualquier teorema usando nada más que unas pocas reglas mecánicas.»

Kurt Gödel.

Primos magnánimos

Un número magnánimo es un número tal que las sumas obtenidas insertando un «+» entre sus dígitos en cualquier posición son números primos. Por ejemplo, 4001 es un número magnánimo porque los números 4+001=5, 40+01=41 y 400+1=401 son primos.

Definir las funciones

tales que

  • (esMagnanimo n) se verifica si n es un número magnánimo. Por ejemplo,

  • primosMagnanimos es la lista de los números primos magnánimos. Por ejemplo,

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

«Existe una distinción entre lo que se puede llamar un problema y lo que puede considerar un ejercicio. Este último sirve para entrenar al en alguna técnica o procedimiento, y requiere poco o ningún original. A diferencia de un ejercicio, un problema, si es apropiado para nivel, debe requerir pensamiento por parte del estudiante. Es imposible exagerar la importancia de los problemas en las matemáticas. Es por medio de los problemas que las matemáticas se desarrollan y se levantan por sí mismas. Cada nuevo descubrimiento en matemáticas es el resultado de un intento de resolver algún problema.»

Howard Eves.

Medias de dígitos de pi

El fichero Digitos_de_pi.txt contiene el número pi con un millón de decimales; es decir,

Definir las funciones

tales que

  • mediasDigitosDePi es la sucesión cuyo n-ésimo elemento es la media de los n primeros dígitos de pi. Por ejemplo,

  • (graficaMediasDigitosDePi n) dibuja la gráfica de los n primeros términos de mediasDigitosDePi. Por ejemplo,
    • (graficaMediasDigitosDePi 20) dibuja
    • (graficaMediasDigitosDePi 200) dibuja
    • (graficaMediasDigitosDePi 2000) dibuja

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

Es el mejor de los buenos
quien sabe que en esta vida
todo es cuestión de medida:
un poco más, algo menos.

Antonio Machado

Cálculo de pi mediante la serie de Nilakantha

Una serie infinita para el cálculo de pi, publicada por Nilakantha en el siglo XV, es

Definir las funciones

tales que

  • (aproximacionPi n) es la n-ésima aproximación de pi obtenido sumando los n primeros términos de la serie de Nilakantha. Por ejemplo,

  • (tabla f ns) escribe en el fichero f las n-ésimas aproximaciones de pi, donde n toma los valores de la lista ns, junto con sus errores. Por ejemplo, al evaluar la expresión

hace que el contenido del fichero «AproximacionesPi.txt» sea

al evaluar la expresión

hace que el contenido del fichero «AproximacionesPi.txt» sea

Soluciones

Pandemia

¡El mundo está en cuarentena! Hay una nueva pandemia que lucha contra la humanidad. Cada continente está aislado de los demás, pero las personas infectadas se han propagado antes de la advertencia.

En este problema se representará el mundo por una cadena como la siguiente

donde 0 representa no infectado, 1 representa infectado y X representa un océano

Las reglas de propagación son:

  • El virus no puede propagarse al otro lado de un océano.
  • Si una persona se infecta, todas las personas de este continente se infectan también.
  • El primer y el último continente no están conectados.

El problema consiste en encontrar el porcentaje de la población humana que se infectó al final. Por ejemplo,

Definir la función

tal que (porcentajeInfectados xs) es el porcentaje final de infectados para el mapa inicial xs. Por ejemplo,

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

«El avance de las matemáticas puede ser visto como un progreso de lo infinito a lo finito.»

Gian-Carlo Rota.

Producto de Kronecker

Si A es una matriz m \times n y B es una matriz p \times q, entonces el producto de Kronecker A \otimes B es la matriz bloque mp \times nq

Más explícitamente, tenemos

Por ejemplo,

Definir la función

tal que (kronecker a b) es el producto de Kronecker de las matrices a y b. Por ejemplo,

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang=»haskell»> y otra con </pre>

Pensamiento

«La resolución de problemas es una habilidad práctica como, digamos, la natación. Adquirimos cualquier habilidad práctica por imitación y práctica. Tratando de nadar, imitas lo que otras personas hacen con sus manos y pies para mantener sus cabezas sobre el agua, y, finalmente, aprendes a nadar practicando la natación. Al intentar resolver problemas, hay que observar e imitar lo que hacen otras personas al resolver problemas y, finalmente, se aprende a resolver problemas haciéndolos.»

George Pólya.

Reducción de SAT a Clique

Nota: En este ejercicio se usa la misma notación que en los anteriores importando los módulos

Definir las funciones

tales que

  • (cliquesFNCf) es la lista de los cliques del grafo de f. Por ejemplo,

  • (cliquesCompletos f) es la lista de los cliques del grafo de f que tiene tantos elementos como cláusulas tiene f. Por ejemplo,

  • (esSatisfaciblePorClique f) se verifica si f no contiene la cláusula vacía, tiene más de una cláusula y posee algún clique completo. Por ejemplo,

Comprobar con QuickCheck que toda fórmula en FNC es satisfacible si, y solo si, es satisfacible por Clique.

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang=»haskell»> y otra con </pre>

Pensamiento

«La resolución de problemas es una habilidad práctica como, digamos, la natación. Adquirimos cualquier habilidad práctica por imitación y práctica. Tratando de nadar, imitas lo que otras personas hacen con sus manos y pies para mantener sus cabezas sobre el agua, y, finalmente, aprendes a nadar practicando la natación. Al intentar resolver problemas, hay que observar e imitar lo que hacen otras personas al resolver problemas y, finalmente, se aprende a resolver problemas haciéndolos.»

George Pólya.

Triángulo de Bell

El triágulo de Bell es el triángulo numérico, cuya primera fila es [1] y en cada fila, el primer elemento es el último de la fila anterior y el elemento en la posición j se obtiene sumando el elemento anterior de su misma fila y de la fila anterior. Sus primeras filas son

Definir la función

tal que trianguloDeBell es la lista con las filas de dicho triángulo. Por ejemplo

Comprobar con QuickCheck que los números que aparecen en la primera columna del triángulo coinciden con los números de Bell; es decir, el primer elemento de la n-ésima fila es el n-ésimo número de Bell.

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang=»haskell»> y otra con </pre>

Pensamiento

«La ciencia es lo que entendemos lo suficientemente bien como para explicarle a una computadora. El arte es todo lo demás.»

Donald Knuth.

Números de Bell

Una partición de un conjunto A es un conjunto de subconjuntos no vacíos de A, disjuntos dos a dos y cuya unión es A. Por ejemplo, el conjunto {1, 2, 3} tiene exactamente 5 particiones:

El n-ésimo número de Bell, B(n), es el número de particiones de un conjunto de n elementos. Por lo visto anteriormentem B(3) = 5.

Definir las funciones

tales que

  • (particiones xs) es el conjunto de las particiones de xs. Por ejemplo,

  • (bell n) es el n-ésimo número de Bell. Por ejemplo,

Comprobar con QuickCheck que (bell n) es equivalente a la función B(n) definida por

  • B(0) = 1
  • B(n) = \displaystyle \sum_{k=0}^{n-1} \binom{n-1}{k} B(k)

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang=»haskell»> y otra con </pre>

Pensamiento

«Cambiemos nuestra actitud tradicional en la construcción de programas. En lugar de imaginar que nuestra tarea principal es indicarle a una computadora lo que debe hacer, concentrémonos más bien en explicarle a los seres humanos lo que queremos que haga una computadora.»

Donald Knuth.

Longitud de la parte periódica

La propiedad de la longitud de la parte periódica afirma que

Si p es un número primo distinto de 2 y de 5, entonces la longitud del período de 1/p es el menor entero positivo n tal que p divide a 10^n - 1.

El objetivo de este ejercicio es la verificación de dicha propiedad.

Las fracciones se representan por un par de enteros. Por ejemplo, el número 2/3 se representa por (2,3). Su tipo es

Los números decimales se representan por ternas, donde el primer elemento es la parte entera, el segundo es el anteperíodo y el tercero es el período. Por ejemplo,

Su tipo es

Definir, usando las funciones cocientesRestos y primerRepetido de los ejercicios anteriores, las funciones

tales que

  • (decimal f) es la representación decimal de la fracción f. Por ejemplo,

  • (longitudPeriodo f) es la longitud de la parte periódica de la representación decimal de la fracción f. Por ejemplo,

Comprobar con QuickCheck la propiedad de la longitud de la parte periódica; es decir, k es un número natural distinto de 0 y 2 y p es el primo k-ésimo, entonces la longitud del período de 1/p es el menor entero positivo n tal que p divide a 10^n - 1..

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang=»haskell»> y otra con </pre>

Pensamiento

«En el desarrollo de la comprensión de los fenómenos complejos, la herramienta más poderosa de que dispone el intelecto humano es la abstracción. La abstracción surge del reconocimiento de las similitudes entre ciertos objetos, situaciones o procesos en el mundo real y de la decisión de concentrarse en estas similitudes e ignorar, por el momento, sus diferencias.»

Tony Hoare

Cocientes y restos de la transformación decimal

La transformación de una fracción en un número decimal se realiza mediante una sucesión de divisiones. Por ejemplo, para transformar a decimal la fracción

La transformación anterior se puede representar mediante la siguiente lista de cocientes y restos

Definir la función

tal que (cocientesRestos (n,d)) es la lista de los cocientes y restos de la transformación decimal de la fracción n/d como se ha indicado anteriormente. Por ejemplo,

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang=»haskell»> y otra con </pre>

Pensamiento

«Hay dos maneras de diseñar un software. Una forma es hacerlo tan simple que obviamente no haya deficiencias. Y la otra forma es hacerlo tan complicado que no haya deficiencias obvias.»

Tony Hoare.

Sumas de cuatro cuadrados

El número 42 es una suma de cuatro cuadrados de números enteros positivos ya que

Definir las funciones

tales que

  • (sumas4Cuadrados n) es la lista de las descompociones de n como suma de cuatro cuadrados. Por ejemplo,

  • (graficaNumeroSumas4Cuadrados n) dibuja la gráfica del número de descomposiciones en sumas de 4 cuadrados de los n primeros. Por ejemplo, (graficaNumeroSumas4Cuadrados 600) dibuja

Soluciones

Pensamiento

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang=»haskell»> y otra con </pre>

¿Cuál es el peor de todos
los afanes? Preguntar.
¿Y el mejor? – Hacer camino
sin volver la vista atrás.

Antonio Machado

Sucesiones sin progresiones aritméticas de longitud 3

Tres números x, y, z está en progresión aritmética (PA) si existe un d tal que y = x+d y z = y+d. Por ejemplo, 1, 3, 5 están en PA ya que 3 = 1+2 y 5 = 3+2.

Se considera la sucesión donde cada uno de sus términos es el número natural tal que no está en PA con cualesquiera dos términos anteriores de la sucesión. Por ejemplo, si representamos por f(n) el n-ésimo término de la sucesión, entonces

Definir la sucesión

donde cada uno de sus términos es el menor número natural tal que no está en PA con cualesquiera dos términos anteriores de la sucesión. Por ejemplo,

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang=»haskell»> y otra con </pre>

Pensamiento

Quien se vive se pierde, Abel decía.
¡Oh, distancia, distancia!, que la estrella
que nadie toca, guía.
¿Quién navegó sin ella?

Antonio Machado

Máximos locales en los números de descomposiciones de Goldbach

La conjetura de Goldbach afirma que todo número entero mayor que 2 se puede expresar como suma de dos primos.

Las descomposiciones de Goldbach son las maneras de expresar un número como suma de dos primos. Por ejemplo, el número 10 tiene dos descomposiciones de Goldbach ya que se puede expresar como la suma de 3 y 7 y la suma de 5 y 5.

Definir las funciones

tales que

  • (descomposicionesGoldbach n) es la lista de las descomposiciones de Goldbach del número n. Por ejemplo,

  • (numeroGolbach n) es el número de descomposiciones de Goldbach del número n. Por ejemplo,

  • (tieneMaximoLocalGoldbach n) se verifica si en n se alcanza un máximo local en el número de descomposiciones de Goldbach; es decir, los números n tales que el número de descomposiciones de Goldbach de n es mayor o igual que las de n-1 y las de n+1. Por ejemplo,

En el ejemplo anterior se comprueba que en los múltiplos de 6 (es decir, en 6, 12, 18, 24, 30, 36 y 42), el número de descomposiciones de Goldbach alcanza un máximo local. Comprobar con QuickCheck que esta propiedad se cumple en general; es decir, para todo entero positivo n, el número de descomposiciones de Goldbach en 6n es un máximo local.

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang=»haskell»> y otra con </pre>

Referencia

Pensamiento

Te abanicaras
con un madrigal que diga:
en amor el olvido pone la sal.

Antonio Machado

Teorema de la amistad

El teorema de la amistad afirma que

En cualquier reunión de n personas hay al menos dos personas que tienen el mismo número de amigos (suponiendo que la relación de amistad es simétrica).

Se pueden usar las siguientes representaciones:

  • números enteros para representar a las personas,
  • pares de enteros (x,y), con x < y, para representar que la persona x e y son amigas y
  • lista de pares de enteros para representar la reunión junto con las relaciones de amistad.

Por ejemplo, [(2,3),(3,5)] representa una reunión de tres personas
(2, 3 y 5) donde

  • 2 es amiga de 3,
  • 3 es amiga de 2 y 5 y
  • 5 es amiga de 3.
    Si clasificamos las personas poniendo en la misma clase las que tienen el mismo número de amigos, se obtiene [[2,5],[3]] ya que 2 y 5 tienen 1 amigo y 3 tiene 2 amigos.

Definir la función

tal que (clasesAmigos r) es la clasificación según el número de amigos de las personas de la reunión r; es decir, la lista cuyos elementos son las listas de personas con 1 amigo, con 2 amigos y así hasta que se completa todas las personas de la reunión r. Por ejemplo,

Comprobar con QuickCheck el teorema de la amistad; es decir, si r es una lista de pares de enteros, entonces (clasesAmigos r’) donde r’ es la lista de los pares (x,y) de r con x < y y se supone que r’ es no vacía.

Soluciones

Referencia

Pensamiento

Me dijo el agua clara que reía,
bajo el sol, sobre el mármol de la fuente:
si te inquieta el enigma del presente
aprende el son de la salmodia mía.

Antonio Machado

Las conjeturas de Catalan y de Pillai

La conjetura de Catalan, enunciada en 1844 por Eugène Charles Catalan y demostrada 2002 por Preda Mihăilescu1, afirma que

Las únicas dos potencias de números enteros consecutivos son 8 y 9 (que son respectivamente 2³ y 3²).

En otras palabras, la única solución entera de la ecuación

para x, a, y, b > 1 es x = 3, a = 2, y = 2, b = 3.

La conjetura de Pillai, propuesta por S.S. Pillai en 1942, generaliza este resultado y es un problema abierto. Afirma que cada entero se puede escribir sólo un número finito de veces como una diferencia de dos potencias perfectas. En otras palabras, para todo entero positivo n, el conjunto de soluciones de

para x, a, y, b > 1 es finito.

Por ejemplo, para n = 4, hay 3 soluciones

Las soluciones se pueden representar por la menor potencia (en el caso anterior, por 4, 32 y 121) ya que dado n (en el caso anterior es 4), la potencia mayor es la menor más n.

Definir las funciones

tales que

  • potenciasPerfectas es la lista de las potencias perfectas (es decir, de los números de la forma x^a con x y a mayores que 1). Por ejemplo,

  • (solucionesPillati n) es la lista de las menores potencias de las soluciones de la ecuación de Pillati x^a – y^b = n; es decir, es la lista de los u tales que u y u+n son potencias perfectas. Por ejemplo,

  • (solucionesPillatiAcotadas c n) es la lista de elementos de (solucionesPillati n) menores que n. Por ejemplo,

Soluciones

Referencia

Pensamiento

Y te enviaré mi canción:
«Se canta lo que se pierde»,
con un papagayo verde
que la diga en tu balcón.

Antonio Machado

Teorema de existencia de divisores

El teorema de existencia de divisores afirma que

En cualquier subconjunto de {1, 2, …, 2m} con al menos m+1 elementos existen números distintos a, b tales que a divide a b.

Un conjunto de números naturales xs es mayoritario si existe un m tal que la lista de xs es un subconjunto de {1,2,…,2m} con al menos m+1 elementos. Por ejemplo, {2,3,5,6} porque es un subconjunto de {1,2,…,6} con más de 3 elementos.

Definir las funciones

tales que

  • (divisores xs) es la lista de pares de elementos distintos de (a,b) tales que a divide a b. Por ejemplo,

  • (esMayoritario xs) se verifica xs es mayoritario. Por ejemplo,

Comprobar con QuickCheck el teorema de existencia de divisores; es decir, en cualquier conjunto mayoritario existen números distintos a, b tales que a divide a b. Para la comprobación se puede usar el siguiente generador de conjuntos mayoritarios

con lo que la propiedad que hay que comprobar con QuickCheck es

Soluciones

Pensamiento

Guiomar, Guiomar,
mírame en ti castigado:
reo de haberte creado,
ya no te puedo olvidar.

Antonio Machado

Teorema de Hilbert-Waring

El problema de Waring, propuesto por Edward Waring consiste en déterminar si, para cada número entero k mayor que 1, existe un número n tal que todo entero positivo se puede escribir como una suma de k-potencias de números positivos con n sumandos como máximo.

La respuesta afirmativa al problema, aportada por David Hilbert, se conoce como el teorema de Hilbert-Waring. Su enunciado es

Para cada número entero k, con k ≥ 2, existe un entero positivo g(k) tal que todo entero positivo se puede expresar como una suma de a lo más g(k) k-ésimas potencias.

Definir las funciones

tales que

  • (descomposiciones x k n) es la lista de descomposiciones de x como suma de n potencias con exponente k de números enteros positivos.

  • (orden x k) es el menor número de sumandos necesario para expresar x como suma de k-ésimas potencias. Por ejemplo,

Comprobar el teorema de Hilbert-Waring para k hasta 7; es decir, para todo número x positivo se verifica que

y, en general,

Soluciones

Referencia

Pensamiento

¡Y en la tersa arena,
cerca de la mar,
tu carne rosa y morena,
súbitamente Guiomar!

Antonio Machado

La mayor potencia de dos no es divisor

Para cada número entero positivo n, se define el conjunto

de los números desde el 1 hasta n.

Definir la función

tal que (mayorPotenciaDeDosEnS n) es la mayor potencia de 2 en S(n). Por ejemplo,

Comprobar con QuickCheck que la mayor potencia de 2 en S(n) no divide a ningún otro elemento de S(n).

Soluciones

Referencia

Pensamiento

¡Sólo tu figura,
como una centella blanca,
en mi noche oscura.

Antonio Machado

Conjetura de Grimm

La conjetura de Grimm establece que a cada elemento de un conjunto de números compuestos consecutivos se puede asignar un número primo que lo divide, de forma que cada uno de los números primos elegidos es distinto de todos los demás. Más formalmente, si n+1, n+2, …, n+k son números compuestos, entonces existen números primos p(i), distintos entre sí, tales que p(i) divide a n+i para 1 ≤ i ≤ k.

Diremos que la lista ps = [p(1),…,p(k)] es una sucesión de Grim para la lista xs = [x(1),…,x(k)] si p(i) son números primos distintos y p(i) divide a x(i), para 1 ≤ i ≤ k. Por ejemplo, 2, 5, 13, 3, 7 es una sucesión de Grim de 24, 25, 26, 27, 28.

Definir las funciones

tales que

  • (compuestos n) es la mayor lista de números enteros consecutivos empezando en n. Por ejemplo,

  • (sucesionesDeGrim xs) es la lista de las sucesiones de Grim de xs. Por ejemplo,

Comprobar con QuickCheck la conjetura de Grim; es decir, para todo número n > 1, (sucesionesDeGrim (compuestos n)) es una lista no vacía.

Soluciones

Pensamiento

De encinar en encinar
se va fatigando el día.

Antonio Machado