Números compuestos persistentes

Un número compuesto persistente es un número compuesto que no se puede transformar en un número primo cambiando sólo uno de sus dígitos. Por ejemplo,

  • 20 no es un compuesto persistente porque cambiando su último dígito por un 3 se transforma en 23 que es primo.
  • 25 no es un compuesto persistente porque cambiando su primer dígito por un 0 se transforma en 5 que es primo.
  • 200 es un compuesto persistente ya que al cambiar su útimo dígito por un impar se obtienen los números 201, 203, 207, 205 y 209 que no son primos y todos sus demás transformados son pares y, por tanto, tampoco son primos.

Definir las funciones

tales que

  • (esCompuestoPersistente n) se verifica si n es un número compuesto persistente. Por ejemplo,

  • compuestosPersistentes es la lista de los números compuestos persistentes. Por ejemplo,

Comprobar con QuickCheck que todos los números de la forma 510+2310*k son números compuestos persistentes.

Soluciones

Números bigenerados

Se dice que y es un generador de x si x es igual a la suma de y los dígitos de y. Por ejemplo, 1996 y 2014 son generadores de 2021 ya que

Un número bigenerado es un número que tiene exactamente 2 generadores. Por ejemplo,

  • 2021 es un número bigenerados y sus generadores son 1996 y 2014
  • 20 no es bigenerador porque no tiene ningún generador
  • 21 no es bigenerador porque tiene sólo un generador (el 15).
  • 101 es el menor número bigenerado ysus generadores son 91 y 100.

Definir las funciones

tales que

  • (esBigenerado x) se verifica si x es bigenerado. Por ejemplo,

  • bigenerados es la lista de los números bigenerados. Por ejemplo,

Comprobar con QuickCheck que la lista de los números bigenerados es infinita; es decir, para cualquier número positivo n existe un y mayor que x que es bigenerado.

Soluciones

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Números cíclicos

La indicatriz de Euler (también llamada función φ de Euler) es una función importante en teoría de números. Si n es un entero positivo, entonces φ(n) se define como el número de enteros positivos menores o iguales a n y coprimos con n. Por ejemplo,

  • φ(15) = 8 ya que los números menores o iguales a 36 y coprimos con 36 son ocho: 1, 2, 4, 7, 8, 11, 13 y 14.
  • φ(21) = 12 ya que los números menores o iguales a 36 y coprimos con 36 son doce: 1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19 y 20.

Un número n es un número cíclico si n y φ(n) no tiene ningún divisor primo común. Por ejemplo, el número 15 es cíclico ya que 15 y 8 (que es φ(15)) no tiene ningún divisor primo común; en cambio, el número 21 no es cíclico ya 21 y 12 (que es φ(21)) son divisibles por 3.

Definir las funciones

tales que

  • (esCiclico n) se verifica si n es un número cíclico. Por ejemplo,

  • ciclicos es la lista de los números cíclicos. Por ejemplo,

Comprobar con QuickCheck que todos los números primos mayores que 2 son cíclicos.

Soluciones

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Números duffinianos

Los números duffinianos, llamados así por Richard Duffy, son los números compuestos n que son coprimos con la suma de sus divisores; es decir, n y la suma de los divisores de n no tienen ningún factor primo común.

Por ejemplo, 35 es un número duffiniano ya que la suma de sus divisores es 1 + 5 + 7 + 35 = 48 que es coprimo con 35.

Definir las funciones

tales que

  • (esDuffiniano n) se verifica si n es duffiniano. Por ejemplo,

  • duffinianos es la sucesión de los números duffinianos. Por ejemplo,

Comprobar con QuickCheck que los números de la forma p^k, con p un primo mayor que 2 y k un entero mayor que 1, son duffinianos.

Soluciones

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>