El teorema de Navidad de Fermat

El 25 de diciembre de 1640, en una carta a Mersenne, Fermat demostró la conjetura de Girard: todo primo de la forma 4n+1 puede expresarse de manera única como suma de dos cuadrados. Por eso es conocido como el teorema de Navidad de Fermat.

Definir las funciones

tales que

  • (representaciones n) es la lista de pares de números naturales (x,y) tales que n = x^2 + y^2 con x <= y. Por ejemplo.

  • primosImparesConRepresentacionUnica es la lista de los números primos impares que se pueden escribir exactamente de una manera como suma de cuadrados de pares de números naturales (x,y) con x <= y. Por ejemplo,

  • primos4nM1 es la lista de los números primos que se pueden escribir como uno más un múltiplo de 4 (es decir, que son congruentes con 1 módulo 4). Por ejemplo,

Comprobar con QuickCheck el torema de Navidad de Fermat; es decir, que para todo número n, los n-ésimos elementos de primosImparesConRepresentacionUnica y de primos4nM1 son iguales.

Soluciones

Pensamiento

– ¡Cuándo llegará otro día!
– Hoy es siempre todavía.

Antonio Machado

Árbol de subconjuntos

Se dice que A es un subconjunto maximal de B si A ⊂ B y no existe ningún C tal que A ⊂ C y C ⊂ B. Por ejemplo, {2,5} es un subconjunto maximal de {2,3,5], pero {3] no lo es.

El árbol de los subconjuntos de un conjunto A es el árbol que tiene como raíz el conjunto A y cada nodo tiene como hijos sus subconjuntos maximales. Por ejemplo, el árbol de subconjuntos de [2,3,5] es

Usando el tipo de dato

el árbol anterior se representa por

Definir las funciones

tales que

  • (arbolSubconjuntos x) es el árbol de los subconjuntos de xs. Por ejemplo,

  • (nOcurrenciasArbolSubconjuntos xs ys) es el número de veces que aparece el conjunto xs en el árbol de los subconjuntos de ys. Por ejemplo,

Comprobar con QuickChek que, para todo entero positivo n, el número de ocurrencia de un subconjunto xs de [1..n] en el árbol de los subconjuntos de [1..n] es el factorial de n-k (donde k es el número de elementos de xs).

Soluciones

Pensamiento

Nunca traces tu frontera,
ni cuides de tu perfil;
todo eso es cosa de fuera.

Antonio Machado

Reconocimiento de conmutatividad

Para representar las operaciones binarias en un conjunto finito A con n elementos se pueden numerar sus elementos desde el 0 al n-1. Entonces cada operación binaria en A se puede ver como una lista de listas xss tal que el valor de aplicar la operación a los elementos i y j es el j-ésimo elemento del i-ésimo elemento de xss. Por ejemplo, si A = {0,1,2} entonces las tabla de la suma y de la resta módulo 3 en A son

Definir la función

tal que (conmutativa xss) se verifica si la operación cuya tabla es xss es conmutativa. Por ejemplo,

Soluciones

Pensamiento

«Nuestras horas son minutos cuando esperamos saber, y siglos cuando
sabemos lo que se puede aprender.»

Antonio Machado

Tablas de operaciones binarias

Para representar las operaciones binarias en un conjunto finito A con n elementos se pueden numerar sus elementos desde el 0 al n-1. Entonces cada operación binaria en A se puede ver como una lista de listas xss tal que el valor de aplicar la operación a los elementos i y j es el j-ésimo elemento del i-ésimo elemento de xss. Por ejemplo, si A = {0,1,2} entonces las tabla de la suma y de la resta módulo 3 en A son

Definir las funciones

tales que

  • (tablaOperacion f n) es la tabla de la operación f módulo n en [0..n-1]. Por ejemplo,

  • (tablaSuma n) es la tabla de la suma módulo n en [0..n-1]. Por ejemplo,

  • (tablaResta n) es la tabla de la resta módulo n en [0..n-1]. Por ejemplo,

  • (tablaProducto n) es la tabla del producto módulo n en [0..n-1]. Por ejemplo,

Comprobar con QuickCheck, si parato entero positivo n de verificar las siguientes propiedades:

  • La suma, módulo n, de todos los números de (tablaSuma n) es 0.
  • La suma, módulo n, de todos los números de (tablaResta n) es 0.
  • La suma, módulo n, de todos los números de (tablaProducto n) es n/2 si n es el doble de un número impar y es 0, en caso contrario.

Soluciones

Pensamiento

¿Tu verdad? No, la Verdad,
y ven conmigo a buscarla.
La tuya guárdatela.

Antonio Machado

Número de divisores compuestos

Definir la función

tal que (nDivisoresCompuestos x) es el número de divisores de x que son compuestos (es decir, números mayores que 1 que no son primos). Por ejemplo,

Soluciones

Pensamiento

«Lo corriente en el hombre es la tendencia a creer verdadero cuanto le
reporta alguna utilidad. Por eso hay tantos hombres capaces de comulgar
con ruedas de molino.»

Antonio Machado

Divisores compuestos

Definir la función

tal que (divisoresCompuestos x) es la lista de los divisores de x que son números compuestos (es decir, números mayores que 1 que no son primos). Por ejemplo,

Soluciones

Pensamiento

«La verdad del hombre empieza donde acaba su propia tontería, pero la
tontería del hombre es inagotable.»

Antonio Machado

Árbol de divisores

Se dice que a es un divisor propio maximal de un número b si a es un divisor de b distinto de b y no existe ningún número c tal que a < c < b, a es un divisor de c y c es un divisor de b. Por ejemplo, 15 es un divisor propio maximal de 30, pero 5 no lo es.

El árbol de los divisores de un número x es el árbol que tiene como raíz el número x y cada nodo tiene como hijos sus divisores propios maximales. Por ejemplo, el árbol de divisores de 30 es

Usando el tipo de dato

el árbol anterior se representa por

Definir las funciones

tales que

  • (arbolDivisores x) es el árbol de los divisores del número x. Por ejemplo,

  • (nOcurrenciasArbolDivisores x y) es el número de veces que aparece el número x en el árbol de los divisores del número y. Por ejemplo,

Soluciones

Pensamiento

«¿Dónde está la utilidad
de nuestras utilidades?
Volvamos a la verdad:
vanidad de vanidades.»

Antonio Machado

Divisores propios maximales

Se dice que a es un divisor propio maximal de un número b si a es un divisor de b distinto de b y no existe ningún número c tal que a < c < b, a es un divisor de c y c es un divisor de b. Por ejemplo, 15 es un divisor propio maximal de 30, pero 5 no lo es.

Definir las funciones

tales que

  • (divisoresPropiosMaximales x) es la lista de los divisores propios maximales de x. Por ejemplo,

  • (nDivisoresPropiosMaximales x) es el número de divisores propios maximales de x. Por ejemplo,

Soluciones

Pensamiento

«Moneda que está en la mano
quizá se deba guardar;
la monedita del alma
se pierde si no se da.»

Antonio Machado

Grado exponencial

El grado exponencial de un número n es el menor número x mayor que 1 tal que n es una subcadena de n^x. Por ejemplo, el grado exponencial de 2 es 5 ya que 2 es una subcadena de 32 (que es 2^5) y no es subcadena de las anteriores potencias de 2 (2, 4 y 16). El grado exponencial de 25 es 2 porque 25 es una subcadena de 625 (que es 25^2).

Definir la función

tal que (gradoExponencial n) es el grado exponencial de n. Por ejemplo,

Soluciones

Referencia

Basado en la sucesión A045537 de la OEIS.

Pensamiento

«De cada diez novedades que pretenden descubrirnos, nueve son
tonterías. La décima y última, que no es necedad, resulta a última hora
que tampoco es nueva.»

Antonio Machado

Números primos de Pierpont

Un número primo de Pierpont es un número primo de la forma 2^{u}3^{v}+1, para u y v enteros no negativos.

Definir la sucesión

tal que sus elementos son los números primos de Pierpont. Por ejemplo,

Soluciones

Pensamiento

«La memoria es infiel: no sólo borra y confunde, sino que, a veces, inventa, para desorientarnos.»

Antonio Machado

Intercambio de la primera y última columna de una matriz

Las matrices se pueden representar mediante listas de listas. Por ejemplo, la matriz

se puede representar por la lista

Definir la función

tal que (intercambia xss) es la matriz obtenida intercambiando la primera y la última columna de xss. Por ejemplo,

Soluciones

Pensamiento

«¡Que difícil es,
cuando todo baja
no bajar también!»

Antonio Machado

Superación de límites

Una sucesión de puntuaciones se puede representar mediante una lista de números. Por ejemplo, [7,5,9,9,4,5,4,2,5,9,12,1]. En la lista anterior, los puntos en donde se alcanzan un nuevo máximo son 7, 9 y 12 (porque son mayores que todos sus anteriores) y en donde se alcanzan un nuevo mínimo son 7, 5, 4, 2 y 1 (porque son menores que todos sus anteriores). Por tanto, el máximo se ha superado 2 veces y el mínimo 4 veces.

Definir las funciones

tales que

  • (nuevosMaximos xs) es la lista de los nuevos máximos de xs. Por ejemplo,

  • (nuevosMinimos xs) es la lista de los nuevos mínimos de xs. Por ejemplo,

  • (nRupturas xs) es el par formado por el número de veces que se supera el máximo y el número de veces que se supera el mínimo en xs. Por ejemplo,

Soluciones

Pensamiento

«Todo necio confunde valor y precio.» ~ Antonio Machado.

Expresiones aritméticas generales

Las expresiones aritméticas. generales se contruyen con las sumas generales (sumatorios) y productos generales (productorios). Su tipo es

Por ejemplo, la expresión (2 * (1 + 2 + 1) * (2 + 3)) + 1 se representa por S [P [N 2, S [N 1, N 2, N 1], S [N 2, N 3]], N 1]

Definir la función

tal que (valor e) es el valor de la expresión e. Por ejemplo,

Soluciones

Pensamiento

Vivir es devorar tiempo, esperar; y por muy trascendente que quiera ser nuestra espera, siempre será espera de seguir esperando.

Antonio Machado

Entre dos conjuntos

Se dice que un x número se encuentra entre dos conjuntos xs e ys si x es divisible por todos los elementos de xs y todos los elementos de zs son divisibles por x. Por ejemplo, 12 se encuentra entre los conjuntos {2, 6} y {24, 36}.

Definir la función

tal que (entreDosConjuntos xs ys) es la lista de elementos entre xs e ys (se supone que xs e ys son listas no vacías de números enteros positivos). Por ejemplo,

Otros ejemplos

Soluciones

Referencia

Este ejercicio está basado en el problema Between two sets de HackerRank.

Pensamiento

Las razones no se transmiten, se engendran, por cooperación, en el diálogo.

Antonio Machado

Árbol de computación de Fibonacci

La sucesión de Fibonacci es

cuyos dos primeros términos son 0 y 1 y los restantentes se obtienen sumando los dos anteriores.

El árbol de computación de su 5º término es

que, usando los árboles definidos por

se puede representar por

Definir las funciones

tales que

  • (arbolFib n) es el árbol de computación del n-ésimo término de la sucesión de Fibonacci. Por ejemplo,

  • (nElementosArbolFib n) es el número de elementos en el árbol de computación del n-ésimo término de la sucesión de Fibonacci. Por ejemplo,

Soluciones

Pensamiento

Toda visión requiere distancia.

Antonio Machado

Menor contenedor de primos

El n-ésimo menor contenenedor de primos es el menor número que contiene como subcadenas los primeros n primos. Por ejemplo, el 6º menor contenedor de primos es 113257 ya que es el menor que contiene como subcadenas los 6 primeros primos (2, 3, 5, 7, 11 y 13).

Definir la función

tal que (menorContenedor n) es el n-ésimo menor contenenedor de primos. Por ejemplo,

Soluciones

Pensamiento

¡Ya hay hombres activos!
Soñaba la charca
con sus mosquitos.

Antonio Machado

Aproximación entre pi y e

El día 11 de noviembre, se publicó en la cuenta de Twitter de Fermat’s Library la siguiente curiosa identidad que relaciona los números e y pi:

Definir las siguientes funciones:

tales que

  • (sumaTerminos n) es la suma de los primeros n términos de la serie 1/(π²+ 1) + 1/(4π²+1) + 1/(9π²+1) + 1/(16π²+ ) + … Por ejemplo,

  • (aproximación x) es el menor número de términos que hay que sumar de la serie anterior para que se diferencie (en valor absoluto) de 1/(e²-1) menos que x. Por ejemplo,

Soluciones

Pensamiento

«Sólo sé que no se nada» contenía la jactancia de un excesivo saber, puesto que olvidó añadir: y aun de esto mismo no estoy completamente seguro.

Antonio Machado

Elemento del árbol binario completo según su posición

Un árbol binario completo es un árbol binario que tiene todos los nodos posibles hasta el penúltimo nivel, y donde los elementos del último nivel están colocados de izquierda a derecha sin dejar huecos entre ellos.

La numeración de los árboles binarios completos se realiza a partir de la raíz, recorriendo los niveles de izquierda a derecha. Por ejemplo,

Los árboles binarios se puede representar mediante el siguiente tipo

Cada posición de un elemento de un árbol es una lista de movimientos hacia la izquierda o hacia la derecha. Por ejemplo, la posición de 9 en al árbol anterior es [I,I,D].

Los tipos de los movimientos y de las posiciones se definen por

Definir la función

tal que (elementoEnPosicion ms) es el elemento en la posición ms. Por ejemplo,

Soluciones

Pensamiento

Las más hondas palabras
del sabio nos enseñan
lo que el silbar del viento cuando sopla
o el sonar de las aguas cuando ruedan.

Antonio Machado

Posiciones en árboles binarios completos

Un árbol binario completo es un árbol binario que tiene todos los nodos posibles hasta el penúltimo nivel, y donde los elementos del último nivel están colocados de izquierda a derecha sin dejar huecos entre ellos.

La numeración de los árboles binarios completos se realiza a partir de la raíz, recorriendo los niveles de izquierda a derecha. Por ejemplo,

Los árboles binarios se puede representar mediante el siguiente tipo

Cada posición de un elemento de un árbol es una lista de movimientos hacia la izquierda o hacia la derecha. Por ejemplo, la posición de 9 en al árbol anterior es [I,I,D].

Los tipos de los movimientos y de las posiciones se definen por

Definir la función

tal que (posicionDeElemento n) es la posición del elemento n en el árbol binario completo. Por ejemplo,

Soluciones

Pensamiento

El ojo que ves no es
ojo porque tú lo veas;
es ojo porque te ve.

Antonio Machado

Posiciones en árboles binarios

Los árboles binarios con datos en los nodos se definen por

Por ejemplo, el árbol

se representa por

Cada posición de un elemento de un árbol es una lista de movimientos hacia la izquierda o hacia la derecha. Por ejemplo, la posición de 4 en al árbol anterior es [I,I,D].

Los tipos de los movimientos y de las posiciones se definen por

Definir la función

tal que (posiciones n a) es la lista de las posiciones del elemento n en el árbol a. Por ejemplo,

Soluciones

Pensamiento

Nunca traces tu frontera,
ni cuides de tu perfil;
todo eso es cosa de fuera.

Antonio Machado

Numeración de los árboles binarios completos

Un árbol binario completo es un árbol binario que tiene todos los nodos posibles hasta el penúltimo nivel, y donde los elementos del último nivel están colocados de izquierda a derecha sin dejar huecos entre ellos.

La numeración de los árboles binarios completos se realiza a partir de la raíz, recorriendo los niveles de izquierda a derecha. Por ejemplo,

Los árboles binarios se puede representar mediante el siguiente tipo

Definir la función

tal que (arbolBinarioCompleto n) es el árbol binario completo con n
nodos. Por ejemplo,

Soluciones

Pensamiento

– Ya se oyen palabras viejas.
– Pues aguzad las orejas.

Antonio Machado