Problema de las particiones óptimas

El problema de la particiones óptimas consiste en dada una lista xs dividirla en dos sublistas ys y zs tales que el valor absoluto de la diferencia de la suma de los elementos de xs y la suma de los elemento de zs sea lo menor posible.Cada una de estas divisiones (ys,zs) es una partición óptima de xs. Por ejemplo, la partición óptima de [2,3,5] es ([2,3],[5]) ya que |(2+3) – 5| = 0. Una lista puede tener distintas particiones óptimas. Por ejemplo, [1,1,2,3] tiene dos particiones óptimas ([1,2],[1,3]) y ([1,1,2],[3]) ambas con diferencia 1 (es decir, 1 = |(1+2)-(1+3)| = |(1+1+2)-3|).

Definir la función

tal que (particionesOptimas xs) es la lista de las particiones óptimas de xs. Por ejemplo,

Soluciones

Huecos de Euclides

El teorema de Euclides afirma que existen infinitos números primos. En palabras de Euclides,

«Hay más números primos que cualquier cantidad propuesta de números primos.» (Proposición 20 del Libro IX de «Los Elementos»)

Su demostración se basa en que si p₁,…,pₙ son los primeros n números primos, entonces entre 1+pₙ y 1+p₁·p₂·…·pₙ hay algún número primo. La cantidad de dichos números primos se llama el n-ésimo hueco de Euclides. Por ejemplo, para n = 3 se tiene que p₁ = 2, p₂ = 3 y p₃ = 5 entre 1+p₃ = 6 y 1+p₁·p₂·p₃ = 31 hay 8 números primos (7, 11, 13, 17, 19, 23, 29 y 31), por lo que el valor del tercer hueco de Euclides es 8.

Definir la función

tal que (hueco n) es el n-ésimo hueco de Eulides. Por ejemplo,

Soluciones

Referencias

Representación binaria de los números de Carol

Un número de Carol es un número entero de la forma 4^n-2^{n+1}-1 o, equivalentemente, (2^n-1)^2-2. Los primeros números de Carol son -1, 7, 47, 223, 959, 3967, 16127, 65023, 261119, 1046527.

Definir las funciones

tales que

  • (carol n) es el n-ésimo número de Carol. Por ejemplo,

  • (carolBinario n) es la representación binaria del n-ésimo número de Carol. Por ejemplo,

Comprobar con QuickCheck que, para n > 2, la representación binaria del n-ésimo número de Carol es el número formado por n-2 veces el dígito 1, seguido por un 0 y a continuación n+1 veces el dígito 1.

Soluciones

Referencias

Mínimo número de operaciones para transformar un número en otro

Se considera el siguiente par de operaciones sobre los números:

  • multiplicar por dos
  • restar uno.

Dados dos números x e y se desea calcular el menor número de operaciones para transformar x en y. Por ejemplo, el menor número de operaciones para transformar el 4 en 7 es 2:

y el menor número de operaciones para transformar 2 en 5 es 4

Definir las siguientes funciones

tales que

  • (arbolOp x n) es el árbol de profundidad n obtenido aplicándole a x las dos operaciones. Por ejemplo,

  • (minNOp x y) es el menor número de operaciones necesarias para transformar x en y. Por ejemplo,

Soluciones

Referencias

Basado en el artículo Minimum number of operation required to
convert number x into y
de Vipin Khushu en
GeeksforGeeks.

Menor potencia de 2 comenzando un número dado

Definir las siguientes funciones

tales que

  • (potenciasDe2 a) es la lista de las potencias de 2 que comienzan por a. Por ejemplo,

  • (menorPotenciaDe2 a) es la menor potencia de 2 que comienza con el número a. Por ejemplo,

Comprobar con QuickCheck que, para todo entero positivo a, existe una potencia de 2 que empieza por a.

Soluciones

Referencias

Máxima ramificación

Los árboles se pueden representar mediante el siguiente tipo de datos

Por ejemplo, los árboles

se representan por

En el primer ejemplo la máxima ramificación es 2 (en el nodo 1 que tiene 2 hijos), la del segundo es 3 (en el nodo 3 que tiene 3 hijos) y la del tercero es 3 (en el nodo 3 que tiene 3 hijos).

Definir la función

tal que (maximaRamificacion a) es la máxima ramificación del árbol a. Por ejemplo,

Soluciones

Números consecutivos compuestos

Una serie compuesta de longitud n es una lista de n números consecutivos que son todos compuestos. Por ejemplo, [8,9,10] y [24,25,26] son dos series compuestas de longitud 3.

Cada serie compuesta se puede representar por el par formado por su primer y último elemento. Por ejemplo, las dos series anteriores se pueden representar pos (8,10) y (24,26) respectivamente.

Definir la función

tal que (menorSerieCompuesta n) es la menor serie compuesta (es decir, la que tiene menores elementos) de longitud 3. Por ejemplo,

Comprobar con QuickCheck que para n > 1, el primer elemento de (menorSerieCompuesta n) es igual al primero de (menorSerieCompuesta (n-1)) o al primero de (menorSerieCompuesta (n+1)).

Soluciones

Referencias

Conmutaciones ondulantes

Una lista binaria es ondulante si sus elementos son alternativamente 0 y 1. Por ejemplo, las listas [0,1,0,1,0] y [1,0,1,0] son ondulantes.

Definir la función

tal que (minConmutacionesOndulante xs) es el mínimo número de conmutaciones (es decir, cambios de 0 a 1 o de 1 a 0) necesarias para transformar xs en una lista ondulante. Por ejemplo,

En el primer ejemplo basta conmutar el elemento en la posición 1 para obtener [1,0,1] y el segundo ejemplo los elementos en las posiciones 1 y 8 para obtener [0,1,0,1,0,1,0,1,0,1].

Soluciones

Números de Dudeney

La semana pasada, Pepe Muñoz Santonja publicó en su blog Algo más que números el artículo Números de Dudeney en la base OEIS

Un número de Dudeney es un número entero n tal que el cubo de la suma de sus dígitos es igual a n. Por ejemplo, 512 es un número de Dudeney ya que (5+1+2)^3 = 8^3 = 512.

Se puede generalizar variando el exponente: Un número de Dudeney de orden k es un número entero n tal que la potencia k-ésima de la suma de sus dígitos es igual a n. Por ejemplo, 2401 es un número de Dudeney de orden 4 ya que (2+4+0+1)^4 = 7^4 = 2401.

Definir la función

tal que (numerosDudeney k) es la lista de los números de Dudeney oe orden k. Por ejemplo,

Comprobar con QuickCheck que 19683 es el mayor número de Dudeney de orden 3.

Soluciones

Números poderosos

Un número es poderoso si es igual a la suma de sus dígitos elevados a sus respectivas posiciones. Por ejemplo, los números 89, 135 y 1306 son poderosos ya que

Definir la función

tal que (esPoderoso n) se verifica si n es poderoso. Por ejemplo,

Comprobar con QuickCheck que 12157692622039623539 es el mayor número poderoso.

Soluciones

Máximo producto en la partición de un número

El artículo de esta semana de Antonio Roldán en su blog Números y hoja de cálculo es Máximo producto en la partición de un número (1)

Una partición de un entero positivo n es una forma de descomponer n como suma de enteros positivos. Dos sumas se considerarán iguales si solo difieren en el orden de los sumandos. Por ejemplo, las 11 particiones de 6 (con sus correspondientes productos) son

Se observa que el máximo producto de las particiones de 6 es 9.

Definir la función

tal que (maximoProductoParticiones n) es el máximo de los productos de las particiones de n. Por ejemplo,

Comprobar con QuickChek que los únicos posibles factores de (maximoProductoParticiones n) son 2 y 3.

Soluciones

Referencia

Cuadrados ondulantes

Un número se dice ondulante si sus cifras alternan entre dos valores. Por ejemplo, 272 es ondulante, así como 2727. El primer cuadrado ondulante no trivial (todos los cuadrados de dos cifras son ondulantes) es 121 = 11^2.

Definir la función

tal que (cuadradosOndulantes n) es la lista de los cuadrados ondulantes menores que n^2. Por ejemplo,

Nota: Este ejercicio ha sido propuesto por Marcos Giráldez.

Soluciones

Referencias

Persistencia multiplicativa de un número

La persistencia multiplicativa de un número es la cantidad de pasos requeridos para reducirlo a una cifra multiplicando sus dígitos. Por ejemplo, la persistencia de 39 es 3 porque 3×9 = 27, 2×7 = 14 y 1×4 = 4.

Definir las funciones

tales que

  • (persistencia x) es la persistencia de x. Por ejemplo,

  • (menorPersistente n) es el menor número con persistencia n. Por ejemplo,

Comprobar con QuickCheck si todos los números menores que 10^233 tienen una persistencia multiplicativa menor o igual que 11.

Nota: Este ejercicio ha sido propuesto por Marcos Giráldez.

Soluciones

Referencias

Números perfectos y cojonudos

Un número perfecto es un número entero positivo que es igual a la suma de sus divisores propios. Por ejemplo, el 28 es perfecto porque sus divisores propios son 1, 2, 4, 7 y 14 y 1+2+4+7+14 = 28.

Un entero positivo x es un número cojonudo si existe un n tal que n > 0, x = 2^n·(2^(n+1)-1) y 2^(n+1)-1 es primo. Por ejemplo, el 28 es cojonudo ya que para n = 2 se verifica que 2 > 0, 28 = 2^2·(2^3-1) y 2^3-1 = 7 es primo.

Definir la funciones

tales que

  • (esPerfecto x) se verifica si x es perfecto. Por ejemplo,

  • (esCojonudo x) se verifica si x es cojonudo. Por ejemplo,

  • (equivalenciaCojonudosPerfectos n) se verifica si para todos los números x menores o iguales que n se tiene que x es perfecto si, y sólo si, x es cojonudo. Por ejemplo,

Soluciones

Subconjuntos acotados

Definir la función

tal que (subconjuntosAcotados xs k) es la lista de los subconjuntos de xs con k elementos como máximo. Por ejemplo,

Soluciones

Variación de la conjetura de Goldbach

La conjetura de Goldbach afirma que

Todo número entero mayor que 5 se puede escribir como suma de tres números primos.

En este ejercicio consideraremos la variación consistente en exigir que los tres sumandos sean distintos.

Definir las funciones

tales que

  • (sumas3PrimosDistintos n) es la lista de las descomposiciones decrecientes de n como tres primos distintos. Por ejemplo,

  • (conKsumas3PrimosDistintos k n) es la lista de los números menores o iguales que n que se pueden escribir en k forma distintas como suma de tres primos distintos. Por ejemplo,

  • (noSonSumas3PrimosDistintos n) es la lista de los números menores o iguales que n que no se pueden escribir como suma de tres primos distintos. Por ejemplo,

Soluciones

Referencias

Basado en el artículo Derivaciones de la conjetura de Goldbach de Claudio Meller en el blog Números y algo más.

Conjetura de Rassias

El artículo de esta semana del blog Números y hoja de cálculo está dedicado a la Conjetura de Rassias. Dicha conjetura afirma que

Para cada número primo p > 2 existen dos primos a y b, con a < b, tales que
(p-1)a = b+1

Dado un primo p > 2, los pares de Rassia de p son los pares de primos (a,b), con a < b, tales que (p-1)a = b+1. Por ejemplo, (2,7) y (3,11) son pares de Rassia de 5 ya que

  • 2 y 7 son primos, 2 < 7 y (5-1)·2 = 7+1
  • 3 y 11 son primos, 3 < 11 y (5-1)·3 = 11+1

Definir las siguientes funciones

tales que

  • (paresRassias p) es la lista de los pares de Rassias del primo p (que se supone que es mayor que 2). Por ejemplo,

  • (conjeturaRassia x) se verifica si para todos los primos menores que x (y mayores que 2) se cumple la conjetura de Rassia. Por ejemplo,

Soluciones

Referencias

Primo anterior

Definir la función

tal que (primoAnterior n) es el mayor primo menor que n (donde n > 2). Por ejemplo,

Calcular el menor número cuya distancia a su primo anterior es mayor que 40.

Soluciones

Primos de Kamenetsky

Un número primo se dice que es un primo de Kamenetsky si al anteponerlo cualquier dígito se obtiene un número compuesto. Por ejemplo, el 5 es un primo de Kamenetsky ya que 15, 25, 35, 45, 55, 65, 75, 85 y 95 son compuestos. También lo es 149 ya que 1149, 2149, 3149, 4149, 5149, 6149, 7149, 8149 y 9149 son compuestos.

Definir la sucesión

tal que sus elementos son los números primos de Kamenetsky. Por ejemplo,

Soluciones

Referencias

Números de Harshad hereditarios

Un número de Harshad es un entero divisible entre la suma de sus dígitos. Por ejemplo, 201 es un número de Harshad porque es divisible por 3 (la suma de sus dígitos). Cuando se elimina el último dígito de 201 se obtiene 20 que también es un número de Harshad. Cuando se elimina el último dígito de 20 se obtiene 2 que también es un número de Harshad. Los números como el 201 que son de Harshad y que los números obtenidos eliminando sus últimos dígitos siguen siendo de Harshad se llaman números de Harshad hereditarios por la derecha. Definir la función

tal que (numeroHHD n) se verifica si n es un número de Harshad hereditario por la derecha. Por ejemplo,

Calcular el mayor número de Harshad hereditario por la derecha con tres dígitos.

Soluciones

Triángulos geométricos

Un triángulo geométrico es un triángulo de lados enteros, representados por la terna (a,b,c) tal que a ≤ b ≤ c y están en progresión geométrica, es decir, b^2 = a*c. Por ejemplo, un triángulo de lados a = 144, b = 156 y c = 169.

Definir la función

tal que (numeroTG n) es el número de triángulos geométricos de perímetro menor o igual que n. Por ejemplo

Nota: Los triángulos geométricos de perímetro menor o igual que 20 son

Se observa que (1,2,4) aunque cumple que 1+2+4 <= 20 y 2^2 = 1*4 no pertenece a la lista ya que 1+2 > 4 y, por tanto, no hay ningún triángulo cuyos lados midan 1, 2 y 4.

Soluciones

Referencia

El ejercicio está basado en el problema 370 del proyecto Euler.