Menu Close

Las subsucesiones tienen el mismo límite que la sucesión

Para extraer una subsucesión se aplica una función de extracción que conserva el orden; por ejemplo, la subsucesión

   uₒ, u₂, u₄, u₆, ...

se ha obtenido con la función de extracción φ tal que φ(n) = 2*n.

En Lean, se puede definir que φ es una función de extracción por

   def extraccion (φ : ℕ → ℕ) :=
     ∀ n m, n < m → φ n < φ m

que v es una subsucesión de u por

   def subsucesion (v u : ℕ → ℝ) :=
     ∃ φ, extraccion φ ∧ v = u ∘ φ

y que a es un límite de u por

   def limite (u : ℕ → ℝ) (a : ℝ) :=
     ∀ ε > 0, ∃ N, ∀ k ≥ N, |u k - a| < ε

Demostrar que las subsucesiones de una sucesión convergente tienen el mismo límite que la sucesión.

Para ello, completar la siguiente teoría de Lean:

import data.real.basic
open nat
 
variables {u v :   }
variable  {a : }
variable  {φ :   }
 
def extraccion (φ :   ):=
   n m, n < m  φ n < φ m
 
def subsucesion (v u :   ) :=
   φ, extraccion φ  v = u  φ
 
notation `|`x`|` := abs x
 
def limite (u :   ) (a : ) :=
   ε > 0,  N,  k  N, |u k - a| < ε
 
example
  (hv : subsucesion v u)
  (ha : limite u a)
  : limite v a :=
sorry
Soluciones con Lean
import data.real.basic
open nat
 
variables {u v :   }
variable  {a : }
variable  {φ :   }
 
def extraccion (φ :   ):=
   n m, n < m  φ n < φ m
 
def subsucesion (v u :   ) :=
   φ, extraccion φ  v = u  φ
 
notation `|`x`|` := abs x
 
def limite (u :   ) (a : ) :=
   ε > 0,  N,  k  N, |u k - a| < ε
 
-- En la demostración se usará el siguiente lema.
lemma aux
  (h : extraccion φ)
  :  n, n  φ n :=
begin
  intro n,
  induction n with m HI,
  { exact nat.zero_le (φ 0), },
  { apply nat.succ_le_of_lt,
    calc m  φ m        : HI
       ... < φ (succ m) : h m (m+1) (lt_add_one m), },
end
 
-- 1ª demostración
example
  (hv : subsucesion v u)
  (ha : limite u a)
  : limite v a :=
begin
  unfold limite,
  intros ε hε,
  unfold limite at ha,
  cases ha ε hε with N hN,
  use N,
  intros n hn,
  unfold subsucesion at hv,
  rcases hv with ⟨φ, hφ1, hφ2⟩,
  rw hφ2,
  apply hN,
  apply le_trans hn,
  exact aux hφ1 n,
end
 
-- 2ª demostración
example
  (hv : subsucesion v u)
  (ha : limite u a)
  : limite v a :=
begin
  intros ε hε,
  cases ha ε hε with N hN,
  use N,
  intros n hn,
  rcases hv with ⟨φ, hφ1, hφ2⟩,
  rw hφ2,
  apply hN,
  exact le_trans hn (aux hφ1 n),
end
 
-- 3ª demostración
example
  (hv : subsucesion v u)
  (ha : limite u a)
  : limite v a :=
begin
  intros ε hε,
  cases ha ε hε with N hN,
  use N,
  intros n hn,
  rcases hv with ⟨φ, hφ1, hφ2⟩,
  rw hφ2,
  exact hN (φ n) (le_trans hn (aux hφ1 n)),
end
 
-- 4ª demostración
example
  (hv : subsucesion v u)
  (ha : limite u a)
  : limite v a :=
begin
  intros ε hε,
  cases ha ε hε with N hN,
  rcases hv with ⟨φ, hφ1, hφ2⟩,
  rw hφ2,
  use N,
  exact λ n hn, hN (φ n) (le_trans hn (aux hφ1 n)),
end
 
-- 5ª demostración
example
  (hv : subsucesion v u)
  (ha : limite u a)
  : limite v a :=
begin
  intros ε hε,
  cases ha ε hε with N hN,
  rcases hv with ⟨φ, hφ1, hφ2⟩,
  rw hφ2,
  exact ⟨N, λ n hn, hN (φ n) (le_trans hn (aux hφ1 n))⟩,
end

Se puede interactuar con la prueba anterior en esta sesión con Lean.

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="lean"> y otra con </pre>

Soluciones con Isabelle/HOL
theory Las_subsucesiones_tienen_el_mismo_limite_que_la_sucesion
imports Main HOL.Real
begin
 
definition extraccion :: "(nat ⇒ nat) ⇒ bool" where
  "extraccion φ ⟷ (∀ n m. n < m ⟶ φ n < φ m)"
 
definition subsucesion :: "(nat ⇒ real) ⇒ (nat ⇒ real) ⇒ bool"
  where "subsucesion v u ⟷ (∃ φ. extraccion φ ∧ v = u ∘ φ)"
 
definition limite :: "(nat ⇒ real) ⇒ real ⇒ bool"
  where "limite u a ⟷ (∀ε>0. ∃N. ∀k≥N. ¦u k - a¦ < ε)"
 
(* En la demostración se usará el siguiente lema *)
lemma aux :
  assumes "extraccion φ"
  shows   "n ≤ φ n"
proof (induct n)
  show "0 ≤ φ 0" by simp
next
  fix n assume HI : "n ≤ φ n"
  then show "Suc n ≤ φ (Suc n)"
    using assms extraccion_def
    by (metis Suc_leI lessI order_le_less_subst1)
qed
 
(* Demostración *)
lemma
  assumes "subsucesion v u"
          "limite u a"
  shows   "limite v a"
proof (unfold limite_def; intro allI impI)
  fix ε :: real
  assume "ε > 0"
  then obtain N where hN : "∀k≥N. ¦u k - a¦ < ε"
    using assms(2) limite_def by auto
  obtain φ where1 : "extraccion φ" and hφ2 : "v = u ∘ φ"
    using assms(1) subsucesion_def by auto
  have "∀k≥N. ¦v k - a¦ < ε"
  proof (intro allI impI)
    fix k
    assume "N ≤ k"
    also have "... ≤ φ k"
      by (simp add: aux hφ1)
    finally have "N ≤ φ k" .
    have "¦v k - a¦ = ¦u (φ k) - a¦"
      using2 by simp
    also have "… < ε"
      using hN ‹N ≤ φ k› by simp
    finally show "¦v k - a¦ < ε" .
  qed
  then show "∃N. ∀k≥N. ¦v k - a¦ < ε"
    by auto
qed
 
end

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="isar"> y otra con </pre>

Leave a Reply