Las clases de equivalencia contienen a las clases de equivalencia de sus elementos

Este ejercicio es el 4º de una serie cuyo objetivo es demostrar que el tipo de las particiones de un conjunto X es isomorfo al tipo de las relaciones de equivalencia sobre X.

Los anteriores son
1. Igualdad de bloques de una partición cuando tienen elementos comunes.
2. Pertenencia a bloques de una partición con elementos comunes.
3. Pertenencia a su propia clase de equivalencia.

El ejercicio consiste en demostrar que si C es una clase de equivalencia y a ∈ C, entonces la clase de equivalencia de a está contenida en C.

Para ello, completar la siguiente teoría de Lean:

[expand title=»Soluciones con Lean»]

Se puede interactuar con la prueba anterior en esta sesión con Lean.

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="lean"> y otra con </pre>
[/expand]

Pertenencia a su propia clase de equivalencia

Este ejercicio es el 3º de una serie cuyo objetivo es demostrar que el tipo de las particiones de un conjunto X es isomorfo al tipo de las relaciones de equivalencia sobre X.

Los anteriores son
1. Igualdad de bloques de una partición cuando tienen elementos comunes.
2. Pertenencia a bloques de una partición con elementos comunes.

En este empezamos con las relaciones de equivalencia, que están definidas en Lean por:

donde A un tipo y R: A → A → Prop es una relación binaria en A.

Además, en Lean se puede definir la clase de equivalencia de un elemento a respecto de una relación de equivalencia R por

Demostrar que cada elemento pertenece a su clase de equivalencia.

Para ello, completar la siguiente teoría de Lean:

[expand title=»Soluciones con Lean»]

Se puede interactuar con la prueba anterior en esta sesión con Lean.

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="lean"> y otra con </pre>
[/expand]

Las particiones definen relaciones de equivalencia

Cada familia de conjuntos P define una relación de forma que dos elementos están relacionados si algún conjunto de P contiene a ambos elementos. Se puede definir en Lean por

Una familia de subconjuntos de X es una partición de X si cada elemento de X pertenece a un único conjunto de P y todos los elementos de P son no vacíos. Se puede definir en Lean por

Demostrar que si P es una partición de X, entonces la relación definida por P es una relación de equivalencia.

Para ello, completar la siguiente teoría de Lean:

[expand title=»Soluciones con Lean»]

Se puede interactuar con la prueba anterior en esta sesión con Lean.

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="lean"> y otra con </pre>
[/expand]

[expand title=»Soluciones con Isabelle/HOL»]

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="isar"> y otra con </pre>
[/expand]

Las particiones definen relaciones transitivas

Cada familia de conjuntos P define una relación de forma que dos elementos están relacionados si algún conjunto de P contiene a ambos elementos. Se puede definir en Lean por

Una familia de subconjuntos de X es una partición de X si cada de X pertenece a un único conjunto de P y todos los elementos de P son no vacíos. Se puede definir en Lean por

Demostrar que si P es una partición de X, entonces la relación definida por P es transitiva.

Para ello, completar la siguiente teoría de Lean:

[expand title=»Soluciones con Lean»]

Se puede interactuar con la prueba anterior en esta sesión con Lean.

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="lean"> y otra con </pre>
[/expand]

[expand title=»Soluciones con Isabelle/HOL»]

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="isar"> y otra con </pre>
[/expand]

Las familias de conjuntos definen relaciones simétricas

Cada familia de conjuntos P define una relación de forma que dos elementos están relacionados si algún conjunto de P contiene a ambos elementos. Se puede definir en Lean por

Demostrar que si P es una familia de subconjunt❙os de X, entonces la relación definida por P es simétrica.

Para ello, completar la siguiente teoría de Lean:

[expand title=»Soluciones con Lean»]

Se puede interactuar con la prueba anterior en esta sesión con Lean.

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="lean"> y otra con </pre>
[/expand]

[expand title=»Soluciones con Isabelle/HOL»]

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="isar"> y otra con </pre>
[/expand]