f⁻¹[A ∪ B] = f⁻¹[A] ∪ f⁻¹[B]
Demostrar con Lean4 que \(f⁻¹[A ∪ B] = f⁻¹[A] ∪ f⁻¹[B]\).
Para ello, completar la siguiente teoría de Lean4:
1 2 3 4 5 6 7 8 9 10 |
import Mathlib.Data.Set.Function open Set variable {α β : Type _} variable (f : α → β) variable (A B : Set β) example : f ⁻¹' (A ∪ B) = f ⁻¹' A ∪ f ⁻¹' B := by sorry |
1. Demostración en lenguaje natural
Tenemos que demostrar que, para todo \(x\),
\[ x ∈ f⁻¹[A ∪ B] ↔ x ∈ f⁻¹[A] ∪ f⁻¹[B] \]
Lo haremos demostrando las dos implicaciones.
(⟹) Supongamos que \(x ∈ f⁻¹[A ∪ B]\). Entonces, \(f(x) ∈ A ∪ B\).
Distinguimos dos casos:
Caso 1: Supongamos que \(f(x) ∈ A\). Entonces, \(x ∈ f⁻¹[A]\) y, por tanto,
\(x ∈ f⁻¹[A] ∪ f⁻¹[B]\).
Caso 2: Supongamos que \(f(x) ∈ B\). Entonces, \(x ∈ f⁻¹[B]\) y, por tanto,
\(x ∈ f⁻¹[A] ∪ f⁻¹[B]\).
(⟸) Supongamos que \(x ∈ f⁻¹[A] ∪ f⁻¹[B]\). Distinguimos dos casos.
Caso 1: Supongamos que \(x ∈ f⁻¹[A]\). Entonces, \(f(x) ∈ A\) y, por tanto,
\(f(x) ∈ A ∪ B\). Luego, \(x ∈ f⁻¹[A ∪ B]\).
Caso 2: Supongamos que \(x ∈ f⁻¹[B]\). Entonces, \(f(x) ∈ B\) y, por tanto,
\(f(x) ∈ A ∪ B\). Luego, \(x ∈ f⁻¹[A ∪ B]\).
2. Demostraciones con Lean4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
import Mathlib.Data.Set.Function open Set variable {α β : Type _} variable (f : α → β) variable (A B : Set β) -- 1ª demostración -- =============== example : f ⁻¹' (A ∪ B) = f ⁻¹' A ∪ f ⁻¹' B := by ext x -- x : α -- ⊢ x ∈ f ⁻¹' (A ∪ B) ↔ x ∈ f ⁻¹' A ∪ f ⁻¹' B constructor . -- ⊢ x ∈ f ⁻¹' (A ∪ B) → x ∈ f ⁻¹' A ∪ f ⁻¹' B intro h -- h : x ∈ f ⁻¹' (A ∪ B) -- ⊢ x ∈ f ⁻¹' A ∪ f ⁻¹' B rw [mem_preimage] at h -- h : f x ∈ A ∪ B rcases h with fxA | fxB . -- fxA : f x ∈ A left -- ⊢ x ∈ f ⁻¹' A apply mem_preimage.mpr -- ⊢ f x ∈ A exact fxA . -- fxB : f x ∈ B right -- ⊢ x ∈ f ⁻¹' B apply mem_preimage.mpr -- ⊢ f x ∈ B exact fxB . -- ⊢ x ∈ f ⁻¹' A ∪ f ⁻¹' B → x ∈ f ⁻¹' (A ∪ B) intro h -- h : x ∈ f ⁻¹' A ∪ f ⁻¹' B -- ⊢ x ∈ f ⁻¹' (A ∪ B) rw [mem_preimage] -- ⊢ f x ∈ A ∪ B rcases h with xfA | xfB . -- xfA : x ∈ f ⁻¹' A rw [mem_preimage] at xfA -- xfA : f x ∈ A left -- ⊢ f x ∈ A exact xfA . -- xfB : x ∈ f ⁻¹' B rw [mem_preimage] at xfB -- xfB : f x ∈ B right -- ⊢ f x ∈ B exact xfB -- 2ª demostración -- =============== example : f ⁻¹' (A ∪ B) = f ⁻¹' A ∪ f ⁻¹' B := by ext x -- x : α -- ⊢ x ∈ f ⁻¹' (A ∪ B) ↔ x ∈ f ⁻¹' A ∪ f ⁻¹' B constructor . -- ⊢ x ∈ f ⁻¹' (A ∪ B) → x ∈ f ⁻¹' A ∪ f ⁻¹' B intros h -- h : x ∈ f ⁻¹' (A ∪ B) -- ⊢ x ∈ f ⁻¹' A ∪ f ⁻¹' B rcases h with fxA | fxB . -- fxA : f x ∈ A left -- ⊢ x ∈ f ⁻¹' A exact fxA . -- fxB : f x ∈ B right -- ⊢ x ∈ f ⁻¹' B exact fxB . -- ⊢ x ∈ f ⁻¹' A ∪ f ⁻¹' B → x ∈ f ⁻¹' (A ∪ B) intro h -- h : x ∈ f ⁻¹' A ∪ f ⁻¹' B -- ⊢ x ∈ f ⁻¹' (A ∪ B) rcases h with xfA | xfB . -- xfA : x ∈ f ⁻¹' A left -- ⊢ f x ∈ A exact xfA . -- xfB : x ∈ f ⁻¹' B right -- ⊢ f x ∈ B exact xfB -- 3ª demostración -- =============== example : f ⁻¹' (A ∪ B) = f ⁻¹' A ∪ f ⁻¹' B := by ext x -- x : α -- ⊢ x ∈ f ⁻¹' (A ∪ B) ↔ x ∈ f ⁻¹' A ∪ f ⁻¹' B constructor . -- ⊢ x ∈ f ⁻¹' (A ∪ B) → x ∈ f ⁻¹' A ∪ f ⁻¹' B rintro (fxA | fxB) . -- fxA : f x ∈ A -- ⊢ x ∈ f ⁻¹' A ∪ f ⁻¹' B exact Or.inl fxA . -- fxB : f x ∈ B -- ⊢ x ∈ f ⁻¹' A ∪ f ⁻¹' B exact Or.inr fxB . -- ⊢ x ∈ f ⁻¹' A ∪ f ⁻¹' B → x ∈ f ⁻¹' (A ∪ B) rintro (xfA | xfB) . -- xfA : x ∈ f ⁻¹' A -- ⊢ x ∈ f ⁻¹' (A ∪ B) exact Or.inl xfA . -- xfB : x ∈ f ⁻¹' B -- ⊢ x ∈ f ⁻¹' (A ∪ B) exact Or.inr xfB -- 4ª demostración -- =============== example : f ⁻¹' (A ∪ B) = f ⁻¹' A ∪ f ⁻¹' B := by ext x -- x : α -- ⊢ x ∈ f ⁻¹' (A ∪ B) ↔ x ∈ f ⁻¹' A ∪ f ⁻¹' B constructor . -- ⊢ x ∈ f ⁻¹' (A ∪ B) → x ∈ f ⁻¹' A ∪ f ⁻¹' B aesop . -- ⊢ x ∈ f ⁻¹' A ∪ f ⁻¹' B → x ∈ f ⁻¹' (A ∪ B) aesop -- 5ª demostración -- =============== example : f ⁻¹' (A ∪ B) = f ⁻¹' A ∪ f ⁻¹' B := by ext x -- x : α -- ⊢ x ∈ f ⁻¹' (A ∪ B) ↔ x ∈ f ⁻¹' A ∪ f ⁻¹' B aesop -- 6ª demostración -- =============== example : f ⁻¹' (A ∪ B) = f ⁻¹' A ∪ f ⁻¹' B := by ext ; aesop -- 7ª demostración -- =============== example : f ⁻¹' (A ∪ B) = f ⁻¹' A ∪ f ⁻¹' B := by ext ; rfl -- 8ª demostración -- =============== example : f ⁻¹' (A ∪ B) = f ⁻¹' A ∪ f ⁻¹' B := rfl -- 9ª demostración -- =============== example : f ⁻¹' (A ∪ B) = f ⁻¹' A ∪ f ⁻¹' B := preimage_union -- 10ª demostración -- =============== example : f ⁻¹' (A ∪ B) = f ⁻¹' A ∪ f ⁻¹' B := by simp -- Lemas usados -- ============ -- variable (x : α) -- variable (p q : Prop) -- #check (Or.inl: p → p ∨ q) -- #check (Or.inr: q → p ∨ q) -- #check (mem_preimage : x ∈ f ⁻¹' A ↔ f x ∈ A) -- #check (preimage_union : f ⁻¹' (A ∪ B) = f ⁻¹' A ∪ f ⁻¹' B) |
Se puede interactuar con las demostraciones anteriores en Lean 4 Web.
3. Demostraciones con Isabelle/HOL
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 |
theory Imagen_inversa_de_la_union imports Main begin (* 1ª demostración *) lemma "f -` (u ∪ v) = f -` u ∪ f -` v" proof (rule equalityI) show "f -` (u ∪ v) ⊆ f -` u ∪ f -` v" proof (rule subsetI) fix x assume "x ∈ f -` (u ∪ v)" then have "f x ∈ u ∪ v" by (rule vimageD) then show "x ∈ f -` u ∪ f -` v" proof (rule UnE) assume "f x ∈ u" then have "x ∈ f -` u" by (rule vimageI2) then show "x ∈ f -` u ∪ f -` v" by (rule UnI1) next assume "f x ∈ v" then have "x ∈ f -` v" by (rule vimageI2) then show "x ∈ f -` u ∪ f -` v" by (rule UnI2) qed qed next show "f -` u ∪ f -` v ⊆ f -` (u ∪ v)" proof (rule subsetI) fix x assume "x ∈ f -` u ∪ f -` v" then show "x ∈ f -` (u ∪ v)" proof (rule UnE) assume "x ∈ f -` u" then have "f x ∈ u" by (rule vimageD) then have "f x ∈ u ∪ v" by (rule UnI1) then show "x ∈ f -` (u ∪ v)" by (rule vimageI2) next assume "x ∈ f -` v" then have "f x ∈ v" by (rule vimageD) then have "f x ∈ u ∪ v" by (rule UnI2) then show "x ∈ f -` (u ∪ v)" by (rule vimageI2) qed qed qed (* 2ª demostración *) lemma "f -` (u ∪ v) = f -` u ∪ f -` v" proof show "f -` (u ∪ v) ⊆ f -` u ∪ f -` v" proof fix x assume "x ∈ f -` (u ∪ v)" then have "f x ∈ u ∪ v" by simp then show "x ∈ f -` u ∪ f -` v" proof assume "f x ∈ u" then have "x ∈ f -` u" by simp then show "x ∈ f -` u ∪ f -` v" by simp next assume "f x ∈ v" then have "x ∈ f -` v" by simp then show "x ∈ f -` u ∪ f -` v" by simp qed qed next show "f -` u ∪ f -` v ⊆ f -` (u ∪ v)" proof fix x assume "x ∈ f -` u ∪ f -` v" then show "x ∈ f -` (u ∪ v)" proof assume "x ∈ f -` u" then have "f x ∈ u" by simp then have "f x ∈ u ∪ v" by simp then show "x ∈ f -` (u ∪ v)" by simp next assume "x ∈ f -` v" then have "f x ∈ v" by simp then have "f x ∈ u ∪ v" by simp then show "x ∈ f -` (u ∪ v)" by simp qed qed qed (* 3ª demostración *) lemma "f -` (u ∪ v) = f -` u ∪ f -` v" by (simp only: vimage_Un) (* 4ª demostración *) lemma "f -` (u ∪ v) = f -` u ∪ f -` v" by auto end |