El límite de uₙ es a syss el de uₙ-a es 0

Demostrar con Lean4 que el límite de \(uₙ\) es \(a\) si, y sólo si, el de \(uₙ-a\) es \(0\).

Para ello, completar la siguiente teoría de Lean4:

Read More «El límite de uₙ es a syss el de uₙ-a es 0»

Si el límite de la sucesión uₙ es a y c ∈ ℝ, entonces el límite de cuₙ es ca

Demostrar con Lean4 que si el límite de la sucesión \(uₙ\) es \(a\) y \(c ∈ ℝ\), entonces el límite de \(cuₙ\) es \(ca\).

Para ello, completar la siguiente teoría de Lean4:

Read More «Si el límite de la sucesión uₙ es a y c ∈ ℝ, entonces el límite de cuₙ es ca»

Si el límite de la sucesión uₙ es a y c ∈ ℝ, entonces el límite de uₙ+c es a+c

Demostrar con Lean4 que si el límite de la sucesión \(uₙ\) es \(a\) y \(c ∈ ℝ\), entonces el límite de \(uₙ+c\) es \(a+c\).

Para ello, completar la siguiente teoría de Lean4:

Read More «Si el límite de la sucesión uₙ es a y c ∈ ℝ, entonces el límite de uₙ+c es a+c»

Unicidad del límite de las sucesiones convergentes

En Lean, una sucesión \(u₀, u₁, u₂, …\) se puede representar mediante una función \((u : ℕ → ℝ)\) de forma que \(u(n)\) es \(uₙ\).

Se define que \(a\) es el límite de la sucesión \(u\), por

Demostrar con Lean4 que cada sucesión tiene como máximo un límite.

Para ello, completar la siguiente teoría de Lean4:

1. Demostración en lenguaje natural

Tenemos que demostrar que si \(u\) es una sucesión y \(a\) y \(b\) son límites de \(u\), entonces \(a = b\). Para ello, basta demostrar que \(a ≤ b\) y \(b ≤ a\).

Demostraremos que \(b ≤ a\) por reducción al absurdo. Supongamos que \(b ≰ a\). Sea \(ε = b – a\). Entonces, ε/2 > 0 y, puesto que \(a\) es un límite de \(u\), existe un \(A ∈ ℕ\) tal que
\[ (∀n ∈ ℕ)\left[n ≥ A → |u(n) – a| < \frac{ε}{2}\right] \tag{1} \]
y, puesto que \(b\) también es un límite de \(u\), existe un \(B ∈ ℕ\) tal que
\[ (∀n ∈ ℕ)\left[n ≥ B → |u(n) – b| < \frac{ε}{2}\right] \tag{2} \]
Sea \(N = máx(A, B)\). Entonces, \(N ≥ A\) y \(N ≥ B\) y, por (2) y (3), se tiene
\begin{align}
|u(N) – a| &< \frac{ε}{2} \tag{3} \\
|u(N) – b| &< \frac{ε}{2} \tag{4}
\end{align}
Para obtener una contradicción basta probar que \(ε < ε\). Su prueba es
\begin{align}
ε &= b – a \\
&= |b – a| \\
&= |(b – a) + (u(N) – u(N))| \\
&= |(u(N) – a) + (b – u(N))| \\
&≤ |u(N) – a| + |b – u(N)| \\
&= |u(N) – a| + |u(N) – b| \\
&< \frac{ε}{2} + \frac{ε}{2} && \text{[por (3) y (4)]} \\
&= ε
\end{align}

La demostración de \(a ≤ b\) es análoga a la anterior.

2. Demostraciones con Lean4

Demostraciones interactivas

Se puede interactuar con las demostraciones anteriores en Lean 4 Web.

3. Demostraciones con Isabelle/HOL

Si la sucesión u converge a a y la v a b, entonces u+v converge a a+b

Demostrar con Lean4 que si la sucesión \(u\) converge a \(a\) y la \(v\) a \(b\), entonces \(u+v\) converge a \(a+b\).

Para ello, completar la siguiente teoría de Lean4:

Read More «Si la sucesión u converge a a y la v a b, entonces u+v converge a a+b»

La sucesión constante sₙ = c converge a c

En Lean, una sucesión \(s₀, s₁, s₂, …\) se puede representar mediante una función \(s : ℕ → ℝ\) de forma que \(s(n)\) es \(sₙ\).

Se define que a es el límite de la sucesión \(s\), por

Demostrar que el límite de la sucesión constante \(sₙ = c\) es \(c\).

Para ello, completar la siguiente teoría de Lean4:

Read More «La sucesión constante sₙ = c converge a c»