Si ≤ es un preorden, entonces < es irreflexiva

Demostrar con Lean4 que si \(≤\) es un preorden, entonces \(<\) es irreflexiva.

Para ello, completar la siguiente teoría de Lean4:

Demostración en lenguaje natural

Se usará la siguiente propiedad de lo preórdenes
\[ (∀ a, b)[a < b ↔ a ≤ b ∧ b ≰ a] \]
Con dicha propiedad, lo que tenemos que demostrar se transforma en
\[ ¬(a ≤ a ∧ a ≰ a) \]
Para demostrarla, supongamos que
\[ a ≤ a ∧ a ≰ a \]
lo que es una contradicción.

Demostraciones con Lean4

Demostraciones interactivas

Se puede interactuar con las demostraciones anteriores en Lean 4 Web.

Referencias

Escribe un comentario