Clausura de un conjunto respecto de una función

Un conjunto A está cerrado respecto de una función f si para elemento x de A se tiene que f(x) pertenece a A. La clausura de un conjunto B respecto de una función f es el menor conjunto A que contiene a B y es cerrado respecto de f. Por ejemplo, la clausura de {0,1,2] respecto del opuesto es {-2,-1,0,1,2}.

Definir la función

tal que (clausura f xs) es la clausura de xs respecto de f. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Cálculo de pi usando la fórmula de Vieta

La fórmula de Vieta para el cálculo de pi es la siguiente
Calculo_de_pi_usando_la_formula_de_Vieta

Definir las funciones

tales que

  • (aproximacionPi n) es la aproximación de pi usando n factores de la fórmula de Vieta. Por ejemplo,

  • (errorPi x) es el menor número de factores de la fórmula de Vieta necesarios para obtener pi con un error menor que x. Por ejemplo,

Soluciones

Pensamiento

El tiempo que la barba me platea,
cavó mis ojos y agrandó mi frente,
va siendo en mi recuerdo transparente,
y mientras más al fondo, más clarea.

Antonio Machado

Sustitución de pares de elementos consecutivos iguales

Dada una lista xs se reemplaza el primer par de elementos consecutivos iguales x por x+1 y se repite el proceso con las listas obtenidas hasta que no haya ningún par de elementos consecutivos iguales. Por ejemplo, para [5,2,1,1,2,2] se tiene el siguiente proceso

Definir la función

tal que (sustitucion xs) es la lista obtenida aplicándole a xs el proceso anterior. Por ejemplo,

Soluciones

Clausura respecto de una operación binaria

Se dice que una operador @ es interno en un conjunto A si al @ sobre elementos de A se obtiene como resultado otro elemento de A. Por ejemplo, la suma es un operador interno en el conjunto de los números naturales pares.

La clausura de un conjunto A con respecto a un operador @ es el menor conjunto B tal que A está contenido en B y el operador @ es interno en el conjunto B. Por ejemplo, la clausura del conjunto {2} con respecto a la suma es el conjunto de los números pares positivos:

Definir la función

tal que (clausuraOperador op xs) es la clausura del conjunto xs con respecto a la operación op. Por ejemplo,

Soluciones

Dígitos iniciales

Definir las funciones

tales que

  • digitosIniciales es la lista de los dígitos iniciales de los números naturales. Por ejemplo,

  • (graficaDigitosIniciales n) dibuja la gráfica de los primeros n términos de la sucesión digitosIniciales. Por ejemplo, (graficaDigitosIniciales 100) dibuja
    Digitos_iniciales_100
    y (graficaDigitosIniciales 1000) dibuja
    Digitos_iniciales_1000

Soluciones

Cálculo de pi usando la fórmula de Vieta

La fórmula de Vieta para el cálculo de pi es la siguiente
Calculo_de_pi_usando_la_formula_de_Vieta

Definir las funciones

tales que

  • (aproximacionPi n) es la aproximación de pi usando n factores de la fórmula de Vieta. Por ejemplo,

  • (errorPi x) es el menor número de factores de la fórmula de Vieta necesarios para obtener pi con un error menor que x. Por ejemplo,

Soluciones