Menu Close

Etiqueta: notElem

Diferencia simétrica

La diferencia simétrica de dos conjuntos es el conjunto cuyos elementos son aquellos que pertenecen a alguno de los conjuntos iniciales, sin pertenecer a ambos a la vez. Por ejemplo, la diferencia simétrica de {2,5,3} y {4,2,3,7} es {5,4,7}.

Definir la función

   diferenciaSimetrica :: Ord a => [a] -> [a] -> [a]

tal que (diferenciaSimetrica xs ys) es la diferencia simétrica de xs e ys. Por ejemplo,

   diferenciaSimetrica [2,5,3] [4,2,3,7]    ==  [4,5,7]
   diferenciaSimetrica [2,5,3] [5,2,3]      ==  []
   diferenciaSimetrica [2,5,2] [4,2,3,7]    ==  [3,4,5,7]
   diferenciaSimetrica [2,5,2] [4,2,4,7]    ==  [4,5,7]
   diferenciaSimetrica [2,5,2,4] [4,2,4,7]  ==  [5,7]

Soluciones

import Test.QuickCheck
import Data.List ((\\), intersect, nub, sort, union)
import qualified Data.Set as S
 
-- 1ª solución
-- ===========
 
diferenciaSimetrica1 :: Ord a => [a] -> [a] -> [a]
diferenciaSimetrica1 xs ys =
  sort (nub ([x | x <- xs, x `notElem` ys] ++ [y | y <- ys, y `notElem` xs]))
 
-- 2ª solución
-- ===========
 
diferenciaSimetrica2 :: Ord a => [a] -> [a] -> [a]
diferenciaSimetrica2 xs ys =
  sort (nub (filter (`notElem` ys) xs ++ filter (`notElem` xs) ys))
 
-- 3ª solución
-- ===========
 
diferenciaSimetrica3 :: Ord a => [a] -> [a] -> [a]
diferenciaSimetrica3 xs ys =
  sort (nub (union xs ys \\ intersect xs ys))
 
-- 4ª solución
-- ===========
 
diferenciaSimetrica4 :: Ord a => [a] -> [a] -> [a]
diferenciaSimetrica4 xs ys =
  [x | x <- sort (nub (xs ++ ys))
     , x `notElem` xs || x `notElem` ys]
 
-- 5ª solución
-- ===========
 
diferenciaSimetrica5 :: Ord a => [a] -> [a] -> [a]
diferenciaSimetrica5 xs ys =
  S.elems ((xs' `S.union` ys') `S.difference` (xs' `S.intersection` ys'))
  where xs' = S.fromList xs
        ys' = S.fromList ys
 
-- Comprobación de equivalencia
-- ============================
 
-- La propiedad es
prop_diferenciaSimetrica :: [Int] -> [Int] -> Bool
prop_diferenciaSimetrica xs ys =
  all (== diferenciaSimetrica1 xs ys)
      [diferenciaSimetrica2 xs ys,
       diferenciaSimetrica3 xs ys,
       diferenciaSimetrica4 xs ys,
       diferenciaSimetrica5 xs ys]
 
-- La comprobación es
--    λ> quickCheck prop_diferenciaSimetrica
--    +++ OK, passed 100 tests.
 
-- Comparación de eficiencia
-- =========================
 
-- La comparación es
--    λ> length (diferenciaSimetrica1 [1..2*10^4] [2,4..2*10^4])
--    10000
--    (2.34 secs, 10,014,360 bytes)
--    λ> length (diferenciaSimetrica2 [1..2*10^4] [2,4..2*10^4])
--    10000
--    (2.41 secs, 8,174,264 bytes)
--    λ> length (diferenciaSimetrica3 [1..2*10^4] [2,4..2*10^4])
--    10000
--    (5.84 secs, 10,232,006,288 bytes)
--    λ> length (diferenciaSimetrica4 [1..2*10^4] [2,4..2*10^4])
--    10000
--    (5.83 secs, 14,814,184 bytes)
--    λ> length (diferenciaSimetrica5 [1..2*10^4] [2,4..2*10^4])
--    10000
--    (0.02 secs, 7,253,496 bytes)

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Caminos en un grafo

Definir las funciones

   grafo   :: [(Int,Int)] -> Grafo Int Int
   caminos :: Grafo Int Int -> Int -> Int -> [[Int]]

tales que

  • (grafo as) es el grafo no dirigido definido cuyas aristas son as. Por ejemplo,
     ghci> grafo [(2,4),(4,5)]
     G ND (array (2,5) [(2,[(4,0)]),(3,[]),(4,[(2,0),(5,0)]),(5,[(4,0)])])
  • (caminos g a b) es la lista los caminos en el grafo g desde a hasta b sin pasar dos veces por el mismo nodo. Por ejemplo,
     ghci> sort (caminos (grafo [(1,3),(2,5),(3,5),(3,7),(5,7)]) 1 7)
     [[1,3,5,7],[1,3,7]]
     ghci> sort (caminos (grafo [(1,3),(2,5),(3,5),(3,7),(5,7)]) 2 7)
     [[2,5,3,7],[2,5,7]]
     ghci> sort (caminos (grafo [(1,3),(2,5),(3,5),(3,7),(5,7)]) 1 2)
     [[1,3,5,2],[1,3,7,5,2]]
     ghci> caminos (grafo [(1,3),(2,5),(3,5),(3,7),(5,7)]) 1 4
     []
     ghci> length (caminos (grafo [(i,j) | i <- [1..10], j <- [i..10]]) 1 10)
     109601

Soluciones

import Data.List (sort)
import I1M.Grafo
import I1M.BusquedaEnEspaciosDeEstados
 
grafo :: [(Int,Int)] -> Grafo Int Int
grafo as = creaGrafo ND (m,n) [(x,y,0) | (x,y) <- as]
  where ns = map fst as ++ map snd as
        m  = minimum ns
        n  = maximum ns
 
-- 1ª solución
-- ===========
 
caminos :: Grafo Int Int -> Int -> Int -> [[Int]]
caminos g a b = aux [[b]] where 
  aux [] = []
  aux ((x:xs):yss)
    | x == a    = (x:xs) : aux yss
    | otherwise = aux ([z:x:xs | z <- adyacentes g x
                               , z `notElem` (x:xs)] 
                       ++ yss) 
 
-- 2ª solución (mediante espacio de estados)
-- =========================================
 
caminos2 :: Grafo Int Int -> Int -> Int -> [[Int]]
caminos2 g a b = buscaEE sucesores esFinal inicial
  where inicial          = [b]
        sucesores (x:xs) = [z:x:xs | z <- adyacentes g x
                                   , z `notElem` (x:xs)] 
        esFinal (x:xs)   = x == a
 
-- Comparación de eficiencia
-- =========================
 
--    ghci> length (caminos (grafo [(i,j) | i <- [1..10], j <- [i..10]]) 1 10)
--    109601
--    (3.57 secs, 500533816 bytes)
--    ghci> length (caminos2 (grafo [(i,j) | i <- [1..10], j <- [i..10]]) 1 10)
--    109601
--    (3.53 secs, 470814096 bytes)

Menor no expresable como suma

Definir la función

   menorNoSuma :: [Integer] -> Integer

tal que (menorNoSuma xs) es el menor número que no se puede escribir como suma de un subconjunto de xs, donde se supone que xs es un conjunto de números enteros positivos. Por ejemplo,

   menorNoSuma [6,1,2]    ==  4
   menorNoSuma [1,2,3,9]  ==  7
   menorNoSuma [5]        ==  1
   menorNoSuma [1..20]    ==  211
   menorNoSuma [1..10^6]  ==  500000500001

Comprobar con QuickCheck que para todo n,

   menorNoSuma [1..n] == 1 + sum [1..n]

Soluciones

-- 1ª definición
-- =============
 
import Data.List (sort, subsequences)
import Test.QuickCheck
 
menorNoSuma1 :: [Integer] -> Integer
menorNoSuma1 xs =
  head [n | n <- [1..], n `notElem` sumas xs]
 
-- (sumas xs) es la lista de las sumas de los subconjuntos de xs. Por ejemplo,
--    sumas [1,2,6]  ==  [0,1,2,3,6,7,8,9]
--    sumas [6,1,2]  ==  [0,6,1,7,2,8,3,9]
sumas :: [Integer] -> [Integer]
sumas xs = map sum (subsequences xs)
 
-- 2ª definición
-- =============
 
menorNoSuma2 :: [Integer] -> Integer
menorNoSuma2  = menorNoSumaOrd . reverse . sort 
 
-- (menorNoSumaOrd xs) es el menor número que no se puede escribir como
-- suma de un subconjunto de xs, donde xs es una lista de números
-- naturales ordenada de mayor a menor. Por ejemplo,
--    menorNoSumaOrd [6,2,1]  ==  4
menorNoSumaOrd [] = 1
menorNoSumaOrd (x:xs) | x > y     = y
                      | otherwise = y+x
  where y = menorNoSumaOrd xs
 
-- Comparación de eficiencia
-- =========================
 
--    λ> menorNoSuma1 [1..20]
--    211
--    (20.40 secs, 28,268,746,320 bytes)
--    λ> menorNoSuma2 [1..20]
--    211
--    (0.01 secs, 0 bytes)
 
-- Propiedad
-- =========
 
-- La propiedad es
prop_menorNoSuma :: (Positive Integer) -> Bool
prop_menorNoSuma (Positive n) =
  menorNoSuma2 [1..n] == 1 + sum [1..n]
 
-- La comprobación es
--    λ> quickCheckWith (stdArgs {maxSize=7}) prop_menorNoSuma
--    +++ OK, passed 100 tests.

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Reducción de SAT a Clique

Nota: En este ejercicio se usa la misma notación que en los anteriores importando los módulos

+ Evaluacion_de_FNC
+ Modelos_de_FNC
+ Problema_SAT_para_FNC
+ Cliques
+ KCliques
+ Grafo_FNC

Definir las funciones

   cliquesFNC :: FNC -> [[(Int,Literal)]]
   cliquesCompletos :: FNC -> [[(Int,Literal)]]
   esSatisfaciblePorClique :: FNC -> Bool

tales que

  • (cliquesFNCf) es la lista de los cliques del grafo de f. Por ejemplo,
     λ> cliquesFNC [[1,-2,3],[-1,2],[-2,3]]
     [[], [(0,1)], [(1,2)], [(0,1),(1,2)], [(2,-2)],
      [(0,1),(2,-2)], [(2,3)], [(0,1),(2,3)], [(1,2),(2,3)],
      [(0,1),(1,2),(2,3)], [(0,-2)], [(2,-2),(0,-2)], [(2,3),(0,-2)],
      [(1,-1)], [(2,-2),(1,-1)], [(2,3),(1,-1)], [(0,-2),(1,-1)],
      [(2,-2),(0,-2),(1,-1)], [(2,3),(0,-2),(1,-1)], [(0,3)],
      [(1,2),(0,3)], [(2,-2),(0,3)], [(2,3),(0,3)],
      [(1,2),(2,3),(0,3)], [(1,-1),(0,3)],
      [(2,-2),(1,-1),(0,3)], [(2,3),(1,-1),(0,3)]]
  • (cliquesCompletos f) es la lista de los cliques del grafo de f que tiene tantos elementos como cláusulas tiene f. Por ejemplo,
     λ> cliquesCompletos [[1,-2,3],[-1,2],[-2,3]]
     [[(0,1),(1,2),(2,3)],   [(2,-2),(0,-2),(1,-1)],
      [(2,3),(0,-2),(1,-1)], [(1,2),(2,3),(0,3)],
      [(2,-2),(1,-1),(0,3)], [(2,3),(1,-1),(0,3)]]
     λ> cliquesCompletos [[1,2],[1,-2],[-1,2],[-1,-2]]
     []
  • (esSatisfaciblePorClique f) se verifica si f no contiene la cláusula vacía, tiene más de una cláusula y posee algún clique completo. Por ejemplo,
     λ> esSatisfaciblePorClique [[1,-2,3],[-1,2],[-2,3]]
     True
     λ> esSatisfaciblePorClique [[1,2],[1,-2],[-1,2],[-1,-2]]
     False

Comprobar con QuickCheck que toda fórmula en FNC es satisfacible si, y solo si, es satisfacible por Clique.

Soluciones

module Reduccion_de_SAT_a_Clique where
 
import Evaluacion_de_FNC
import Modelos_de_FNC
import Problema_SAT_para_FNC
import Cliques
import KCliques
import Grafo_FNC
import Data.List (nub, sort)
import Test.QuickCheck
 
cliquesFNC :: FNC -> [[(Int,Literal)]]
cliquesFNC f = cliques (grafoFNC f)
 
cliquesCompletos :: FNC -> [[(Int,Literal)]]
cliquesCompletos cs = kCliques (grafoFNC cs) (length cs)
 
esSatisfaciblePorClique :: FNC -> Bool
esSatisfaciblePorClique f =
     [] `notElem` f'
  && (length f' <= 1 || not (null (cliquesCompletos f')))
  where f' = nub (map (nub . sort) f) 
 
-- La propiedad es
prop_esSatisfaciblePorClique :: FNC -> Bool
prop_esSatisfaciblePorClique f =
  esSatisfacible f == esSatisfaciblePorClique f
 
-- La comprobación es
--    λ> quickCheckWith (stdArgs {maxSize=7}) prop_esSatisfaciblePorClique
--    +++ OK, passed 100 tests.

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang=”haskell”> y otra con </pre>

Pensamiento

“La resolución de problemas es una habilidad práctica como, digamos, la natación. Adquirimos cualquier habilidad práctica por imitación y práctica. Tratando de nadar, imitas lo que otras personas hacen con sus manos y pies para mantener sus cabezas sobre el agua, y, finalmente, aprendes a nadar practicando la natación. Al intentar resolver problemas, hay que observar e imitar lo que hacen otras personas al resolver problemas y, finalmente, se aprende a resolver problemas haciéndolos.”

George Pólya.

Modelos de FNC (fórmulas en forma normal conjuntiva)

Nota: En este ejercicio usaremos las mismas notaciones que en anterior importando los módulos Interpretaciones_de_FNC y Evaluacion_de_FNC

Una interpretación I es un modelo de un literal L si el valor de L en I es verdadero. Por ejemplo, la interpretación [2,5]

  • es modelo del literal x(2) (porque 2 ∈ [2,5])
  • no es modelo del literal x(3) (porque 3 ∉ [2,5])
  • es modelo del literal -x(4) (porque 4 ∉ [2,5])

Una interpretación I es un modelo de una cláusula C si el valor de C en I es verdadero. Por ejemplo, la interpretación [2,5]

  • es modelo de la cláusula (x(2) v x(3)) (porque x(2) es verdadero)
  • no es modelo de la cláusula (x(3) v x(4)) (porque x(3) y x(4) son falsos)

Una interpretación I es un modelo de una FNC F si el valor de F en I es verdadero. Por ejemplo, la interpretación [2,5]

  • es modelo de la FNC ((x(2) v x(5)) & (-x(4) v x(3)) porque lo es de sus dos cláusulas.

Definir las siguientes funciones

   esModeloLiteral  :: Interpretacion -> Literal -> Bool
   esModeloClausula :: Interpretacion -> Clausula -> Bool
   esModelo         :: Interpretacion -> FNC -> Bool
   modelosClausula  :: Clausula -> [Interpretacion]
   modelos          :: FNC -> [Interpretacion]

tales que

  • (esModeloLiteral i l) se verifica si i es modelo del literal l. Por ejemplo,
     esModeloLiteral [3,5] 3     ==  True
     esModeloLiteral [3,5] 4     ==  False
     esModeloLiteral [3,5] (-3)  ==  False
     esModeloLiteral [3,5] (-4)  ==  True
  • (esModeloClausula i c) se verifica si i es modelo de la cláusula c. Por ejemplo,
     esModeloClausula [3,5] [2,3,-5]  ==  True
     esModeloClausula [3,5] [2,4,-1]  ==  True
     esModeloClausula [3,5] [2,4,1]   ==  False
  • (esModelo i f) se verifica si i es modelo de la fórmula f. Por ejemplo,
     esModelo [1,3] [[1,-2],[3]]  ==  True
     esModelo [1]   [[1,-2],[3]]  ==  False
     esModelo [1]   []            ==  True
  • (modelosClausula c) es la lista de los modelos de la cláusula c. Por ejemplo,
     modelosClausula [-1,2]  ==  [[],[2],[1,2]]
     modelosClausula [-1,1]  ==  [[],[1]]
     modelosClausula []      ==  []
  • (modelos f) es la lista de los modelos de la fórmula f. Por ejemplo,
     modelos [[-1,2],[-2,1]]    ==  [[],[1,2]]
     modelos [[-1,2],[-2],[1]]  ==  []
     modelos [[1,-1,2]]         ==  [[],[1],[2],[1,2]]

Nota: Escribir la solución en el módulo Modelos_de_FNC para poderlo usar en los siguientes ejercicios.

Soluciones

module Modelos_de_FNC where
 
import Interpretaciones_de_FNC 
import Evaluacion_de_FNC
 
esModeloLiteral :: Interpretacion -> Literal -> Bool
esModeloLiteral i l
  | l > 0     = l `elem` i
  | otherwise = negate l `notElem` i
 
esModeloClausula :: Interpretacion -> Clausula -> Bool
esModeloClausula i = any (esModeloLiteral i)
 
esModelo :: Interpretacion -> FNC -> Bool
esModelo i = all (esModeloClausula i)
 
modelosClausula :: Clausula -> [Interpretacion]
modelosClausula c =
  [i | i <- interpretacionesClausula c,
       esModeloClausula i c]
 
modelos :: FNC -> [Interpretacion]
modelos f =
  [i | i <- interpretaciones f,
       esModelo i f]

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang=”haskell”> y otra con </pre>

Pensamiento

“Por muy correcto que parezca un teorema matemático, nunca hay que conformarse con que no haya algo imperfecto en él hasta obtener la impresión de qie es bello.”

George Boole.