Menu Close

Etiqueta: min

Particiones de enteros positivos

Una partición de un entero positivo n es una manera de escribir n como una suma de enteros positivos. Dos sumas que sólo difieren en el orden de sus sumandos se consideran la misma partición. Por ejemplo, 4 tiene cinco particiones: 4, 3+1, 2+2, 2+1+1 y 1+1+1+1.

Definir la función

   particiones :: Int -> [[Int]]

tal que (particiones n) es la lista de las particiones del número n. Por ejemplo,

   particiones 4  ==  [[4],[3,1],[2,2],[2,1,1],[1,1,1,1]]
   particiones 5  ==  [[5],[4,1],[3,2],[3,1,1],[2,2,1],[2,1,1,1],[1,1,1,1,1]]
   length (particiones 50)  ==  204226

Soluciones

module Particiones_de_enteros_positivos where
 
import Test.QuickCheck
 
-- 1ª solución
-- ===========
 
particiones1 :: Int -> [[Int]]
particiones1 0 = [[]]
particiones1 n = [x:y | x <- [n,n-1..1],
                        y <- particiones1 (n-x),
                        [x] >= take 1 y]
 
-- 2ª solución
-- ===========
 
particiones2 :: Int -> [[Int]]
particiones2 n = aux !! n
  where
    aux = [] : map particiones [1..]
    particiones m = [m] : [x:p | x <- [m,m-1..1],
                                 p <- aux !! (m-x),
                                 x >= head p]
 
-- 3ª solución
-- ===========
 
particiones3 :: Int -> [[Int]]
particiones3 n = aux n n
  where aux 0 _ = [[]]
        aux n' m = concat [map (i:) (aux (n'-i) i)
                          | i <- [n',n'-1..1], i <= m]
 
-- 4ª solución
-- ===========
 
particiones4 :: Int -> [[Int]]
particiones4 n = aux n n
  where aux 0 _ = [[]]
        aux n' m = concat [map (i:) (aux (n'-i) i)
                          | i <- [k,k-1..1]]
          where k = min m n'
 
-- Comprobación de equivalencia
-- ============================
 
-- La propiedad es
prop_particiones :: Positive Int -> Bool
prop_particiones (Positive n) =
  all (== particiones1 n)
      [ particiones2 n
      , particiones3 n
      , particiones4 n
      ]
 
-- La comprobación es
--    λ> quickCheckWith (stdArgs {maxSize=20}) prop_particiones
--    +++ OK, passed 100 tests.
 
-- Comparación de eficiencia                                        --
-- =========================
 
-- La comparación es
--    λ> length (particiones1 23)
--    1255
--    (12.50 secs, 6,614,487,992 bytes)
--    λ> length (particiones2 23)
--    1255
--    (0.04 secs, 3,071,104 bytes)
--    λ> length (particiones3 23)
--    1255
--    (0.02 secs, 9,163,544 bytes)
--    λ> length (particiones4 23)
--    1255
--    (0.01 secs, 7,149,512 bytes)
--
--    λ> length (particiones2 50)
--    204226
--    (2.50 secs, 758,729,104 bytes)
--    λ> length (particiones3 50)
--    204226
--    (4.26 secs, 2,359,121,096 bytes)
--    λ> length (particiones4 50)
--    204226
--    (2.67 secs, 1,598,588,040 bytes)

El código se encuentra en GitHub.

Elementos de una matriz con algún vecino menor

Las matrices pueden representarse mediante tablas cuyos índices son pares de números naturales. Su tipo se define por

   type Matriz = Array (Int,Int) Int

Por ejemplo, la matriz

   |9 4 6 5|
   |8 1 7 3|
   |4 2 5 4|

se define por

   ej :: Matriz
   ej = listArray ((1,1),(3,4)) [9,4,6,5,8,1,7,3,4,2,5,4]

Los vecinos de un elemento son los que están a un paso en la misma fila, columna o diagonal. Por ejemplo, en la matriz anterior, el 1 tiene 8 vecinos (el 9, 4, 6, 8, 7, 4, 2 y 5) pero el 9 sólo tiene 3 vecinos (el 4, 8 y 1).

Definir la función

   algunoMenor :: Matriz -> [Int]

tal que (algunoMenor p) es la lista de los elementos de p que tienen algún vecino menor que él. Por ejemplo,

   algunoMenor ej == [9,4,6,5,8,7,4,2,5,4]

pues sólo el 1 y el 3 no tienen ningún vecino menor en la matriz.

Soluciones

import Data.Array (Array, (!), bounds, indices, inRange, listArray)
import Test.QuickCheck (Arbitrary, Gen, arbitrary, chooseInt, quickCheck,
                        vectorOf)
 
type Matriz = Array (Int,Int) Int
 
ej :: Matriz
ej = listArray ((1,1),(3,4)) [9,4,6,5,8,1,7,3,4,2,5,4]
 
type Pos = (Int,Int)
 
-- 1ª solución
-- ===========
 
algunoMenor1 :: Matriz -> [Int]
algunoMenor1 a =
  [a!p| p <- indices a,
        any (< a!p) (vecinos1 a p)]
 
-- (vecinos q p) es la lista de los vecinos en la matriz a de la
-- posición p. Por ejemplo,
--    vecinos1 ej (2,2)  ==  [9,4,6,8,7,4,2,5]
--    vecinos1 ej (1,1)  ==  [4,8,1]
vecinos1 :: Matriz -> Pos -> [Int]
vecinos1 a p =
  [a!p' | p' <- posicionesVecinos1 a p]
 
-- (posicionesVecinos a p) es la lista de las posiciones de los
-- vecino de p en la matriz a. Por ejemplo,
--    λ> posicionesVecinos1 3 3 (2,2)
--    [(1,1),(1,2),(1,3),(2,1),(2,3),(3,1),(3,2),(3,3)]
--    λ> posicionesVecinos1 3 3 (1,1)
--    [(1,2),(2,1),(2,2)]
posicionesVecinos1 :: Matriz -> Pos -> [Pos]
posicionesVecinos1 a (i,j) =
  [(i+di,j+dj) | (di,dj) <- [(-1,-1),(-1,0),(-1,1),
                             ( 0,-1),       ( 0,1),
                             ( 1,-1),( 1,0),( 1,1)],
                 inRange (bounds a) (i+di,j+dj)]
 
-- 2ª solución
-- ===========
 
algunoMenor2 :: Matriz -> [Int]
algunoMenor2 a =
  [a!p | p <- indices a,
         any (<a!p) (vecinos2 p)]
  where
    vecinos2 p =
      [a!p' | p' <- posicionesVecinos2 p]
    posicionesVecinos2 (i,j) =
      [(i+di,j+dj) | (di,dj) <- [(-1,-1),(-1,0),(-1,1),
                                 ( 0,-1),       ( 0,1),
                                 ( 1,-1),( 1,0),( 1,1)],
                     inRange (bounds a) (i+di,j+dj)]
 
-- 3ª solución
-- ===========
 
algunoMenor3 :: Matriz -> [Int]
algunoMenor3 a =
  [a!p | p <- indices a,
         any (<a!p) (vecinos3 p)]
  where
    vecinos3 p =
      [a!p' | p' <- posicionesVecinos3 p]
    posicionesVecinos3 (i,j) =
      [(i',j') | i' <- [i-1..i+1],
                 j' <- [j-1..j+1],
                 (i',j') /= (i,j),
                 inRange (bounds a) (i',j')]
 
-- 4ª solución
-- ===========
 
algunoMenor4 :: Matriz -> [Int]
algunoMenor4 a =
  [a!p | p <- indices a,
         any (<a!p) (vecinos4 p)]
  where
    vecinos4 p =
      [a!p' | p' <- posicionesVecinos4 p]
    posicionesVecinos4 (i,j) =
      [(i',j') | i' <- [max 1 (i-1)..min m (i+1)],
                 j' <- [max 1 (j-1)..min n (j+1)],
                 (i',j') /= (i,j)]
      where (_,(m,n)) = bounds a
 
 
-- 5ª solución
-- ===========
 
algunoMenor5 :: Matriz -> [Int]
algunoMenor5 a =
  [a!p | p <- indices a,
         any (<a!p) (vecinos5 p)]
  where
    vecinos5 p =
      [a!p' | p' <- posicionesVecinos5 p]
    posicionesVecinos5 (i,j) =
      [(i-1,j-1) | i > 1, j > 1] ++
      [(i-1,j)   | i > 1]        ++
      [(i-1,j+1) | i > 1, j < n] ++
      [(i,j-1)   | j > 1]        ++
      [(i,j+1)   | j < n]        ++
      [(i+1,j-1) | i < m, j > 1] ++
      [(i+1,j)   | i < m]        ++
      [(i+1,j+1) | i < m, j < n]
      where (_,(m,n)) = bounds a
 
-- ---------------------------------------------------------------------
 
-- Comprobación de equivalencia
-- ============================
 
newtype Matriz2 = M Matriz
  deriving Show
 
-- Generador de matrices arbitrarias. Por ejemplo,
--    λ> generate matrizArbitraria
--    M (array ((1,1),(3,4))
--             [((1,1),18),((1,2),6), ((1,3),-23),((1,4),-13),
--              ((2,1),-2),((2,2),22),((2,3),-25),((2,4),-5),
--              ((3,1),2), ((3,2),16),((3,3),-15),((3,4),7)])
matrizArbitraria :: Gen Matriz2
matrizArbitraria = do
  m  <- chooseInt (1,10)
  n  <- chooseInt (1,10)
  xs <- vectorOf (m*n) arbitrary
  return (M (listArray ((1,1),(m,n)) xs))
 
-- Matriz es una subclase de Arbitrary.
instance Arbitrary Matriz2 where
  arbitrary = matrizArbitraria
 
-- La propiedad es
prop_algunoMenor :: Matriz2 -> Bool
prop_algunoMenor (M p) =
  all (== algunoMenor1 p)
      [algunoMenor2 p,
       algunoMenor3 p,
       algunoMenor4 p,
       algunoMenor5 p]
 
-- La comprobación es
--    λ> quickCheck prop_algunoMenor
--    +++ OK, passed 100 tests.
 
-- Comparación de eficiencia
-- =========================
 
-- La comparación es
--    λ> maximum (algunoMenor1 (listArray ((1,1),(600,800)) [0..]))
--    479999
--    (2.20 secs, 1,350,075,240 bytes)
--    λ> maximum (algunoMenor2 (listArray ((1,1),(600,800)) [0..]))
--    479999
--    (2.24 secs, 1,373,139,968 bytes)
--    λ> maximum (algunoMenor3 (listArray ((1,1),(600,800)) [0..]))
--    479999
--    (2.08 secs, 1,200,734,112 bytes)
--    λ> maximum (algunoMenor4 (listArray ((1,1),(600,800)) [0..]))
--    479999
--    (2.76 secs, 1,287,653,136 bytes)
--    λ> maximum (algunoMenor5 (listArray ((1,1),(600,800)) [0..]))
--    479999
--    (1.67 secs, 953,937,600 bytes)

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Matriz de mínimas distancias

Definir las funciones

   minimasDistancias             :: Matrix Int -> Matrix Int
   sumaMinimaDistanciasIdentidad :: Int -> Int

tales que

  • (mininasDistancias a) es la matriz de las mínimas distancias de cada elemento de a hasta alcanzar un 1 donde un paso es un movimiento hacia la izquierda, derecha, arriba o abajo. Por ejemplo,
     λ> minimasDistancias (fromLists [[0,1,1],[0,0,1]])
     ( 1 0 0 )
     ( 2 1 0 )
     λ> minimasDistancias (fromLists [[0,0,1],[1,0,0]])
     ( 1 1 0 )
     ( 0 1 1 )
     λ> minimasDistancias (identity 5)
     ( 0 1 2 3 4 )
     ( 1 0 1 2 3 )
     ( 2 1 0 1 2 )
     ( 3 2 1 0 1 )
     ( 4 3 2 1 0 )
  • (sumaMinimaDistanciasIdentidad n) es la suma de los elementos de la matriz de las mínimas distancias correspondiente a la matriz identidad de orden n. Por ejemplo,
     sumaMinimaDistanciasIdentidad 5       ==  40
     sumaMinimaDistanciasIdentidad (10^2)  ==  333300
     sumaMinimaDistanciasIdentidad (10^4)  ==  333333330000
     sumaMinimaDistanciasIdentidad (10^6)  ==  333333333333000000

Soluciones

import Data.Matrix     
import Data.Maybe      
import Test.QuickCheck 
 
-- 1ª definición de minimasDistancias
-- ==================================
 
minimasDistancias :: Matrix Int -> Matrix Int
minimasDistancias a = 
  matrix (nrows a) (ncols a) (\(i,j) -> minimaDistancia (i,j) a) 
 
minimaDistancia :: (Int,Int) -> Matrix Int -> Int
minimaDistancia (a,b) p =
  minimum [distancia (a,b) (c,d) | (c,d) <- unos p]
 
unos :: Matrix Int -> [(Int,Int)]
unos p = [(i,j) | i <- [1..nrows p]
                , j <- [1..ncols p]
                , p ! (i,j) == 1]
 
distancia :: (Int,Int) -> (Int,Int) -> Int
distancia (a,b) (c,d) = abs (c - a) + abs (d - b)
 
-- 2ª definición de minimasDistancias
-- ==================================
 
minimasDistancias2 :: Matrix Int -> Matrix Int
minimasDistancias2 a = fmap fromJust (aux (matrizInicial a))
  where aux b | Nothing `elem` c = aux c
              | otherwise        = c
          where c = propagacion b
 
-- (matrizInicial a) es la matriz que tiene (Just 0) en los elementos de
-- a iguales a 1 y Nothing en los restantes. Por ejemplo,
--    λ> matrizInicial (fromLists [[0,0,1],[1,0,0]])
--    ( Nothing Nothing  Just 0 )
--    (  Just 0 Nothing Nothing )
matrizInicial :: Matrix Int -> Matrix (Maybe Int)
matrizInicial a = matrix m n f
  where m = nrows a
        n = ncols a
        f (i,j) | a ! (i,j) == 1 = Just 0
                | otherwise      = Nothing
 
-- (propagacion a) es la matriz obtenida cambiando los elementos Nothing
-- de a por el siguiente del mínimo de los valores de sus vecinos. Por
-- ejemplo,
--    λ> propagacion (fromLists [[0,1,1],[0,0,1]])
--    (  Just 1  Just 0  Just 0 )
--    ( Nothing  Just 1  Just 0 )
--    
--    λ> propagacion it
--    ( Just 1 Just 0 Just 0 )
--    ( Just 2 Just 1 Just 0 )
propagacion :: Matrix (Maybe Int) -> Matrix (Maybe Int)
propagacion a = matrix m n f
  where
    m = nrows a
    n = ncols a
    f (i,j) | isJust x  = x
            | otherwise = siguiente (minimo (valoresVecinos a (i,j)))
      where x = a ! (i,j)
 
-- (valoresVecinos a p) es la lista de los valores de los vecinos la
-- posición p en la matriz a. Por ejemplo,             
--    λ> a = fromList 3 4 [1..]
--    λ> a
--    (  1  2  3  4 )
--    (  5  6  7  8 )
--    (  9 10 11 12 )
--    
--    λ> valoresVecinos a (1,1)
--    [5,2]
--    λ> valoresVecinos a (2,3)
--    [3,11,6,8]
--    λ> valoresVecinos a (2,4)
--    [4,12,7]
valoresVecinos :: Matrix a -> (Int,Int) -> [a]
valoresVecinos a (i,j) = [a ! (k,l) | (k,l) <- vecinos m n (i,j)]
  where m = nrows a
        n = ncols a
 
-- (vecinos m n p) es la lista de las posiciones vecinas de la posición
-- p en la matriz a; es decir, los que se encuentran a su izquierda,
-- derecha, arriba o abajo. por ejemplo,
--    vecinos 3 4 (1,1)  ==  [(2,1),(1,2)]
--    vecinos 3 4 (2,3)  ==  [(1,3),(3,3),(2,2),(2,4)]
--    vecinos 3 4 (2,4)  ==  [(1,4),(3,4),(2,3)]
vecinos :: Int -> Int -> (Int,Int) -> [(Int,Int)]
vecinos m n (i,j) = [(i - 1,j)     | i > 1] ++
                    [(i + 1,j)     | i < m] ++
                    [(i,    j - 1) | j > 1] ++
                    [(i,    j + 1) | j < n]
 
-- (minimo xs) es el mínimo de la lista de valores opcionales xs
-- (considerando Nothing como el mayor elemento). Por ejemplo,
--    minimo [Just 3, Nothing, Just 2]  ==  Just 2
minimo :: [Maybe Int] -> Maybe Int
minimo = foldr1 minimo2
 
-- (minimo2 x y) es el mínimo de los valores opcionales x e y
-- (considerando Nothing como el mayor elemento). Por ejemplo,
--    minimo2 (Just 3) (Just 2)  ==  Just 2
--    minimo2 (Just 1) (Just 2)  ==  Just 1
--    minimo2 (Just 1) Nothing   ==  Just 1
--    minimo2 Nothing (Just 2)   ==  Just 2
--    minimo2 Nothing Nothing    ==  Nothing
minimo2 :: Maybe Int -> Maybe Int -> Maybe Int
minimo2 (Just x) (Just y) = Just (min x y)
minimo2 Nothing  (Just y) = Just y
minimo2 (Just x) Nothing  = Just x
minimo2 Nothing  Nothing  = Nothing
 
-- (siguiente x) es el siguiente elemento del opcional x (considerando
-- Nothing como el infinito). Por ejemplo, 
--    siguiente (Just 3)  ==  Just 4
--    siguiente Nothing  ==  Nothing
siguiente :: Maybe Int -> Maybe Int
siguiente (Just x) = Just (1 + x)
siguiente Nothing  = Nothing
 
-- Comparación de eficiencia
-- =========================
 
-- La comparación es
--    λ> maximum (minimasDistancias (identity 40))
--    39
--    (3.85 secs, 654,473,496 bytes)
--    λ> maximum (minimasDistancias2 (identity 40))
--    39
--    (0.50 secs, 75,079,912 bytes)
 
-- 1ª definición de sumaMinimaDistanciasIdentidad
-- ==============================================
 
sumaMinimaDistanciasIdentidad :: Int -> Int
sumaMinimaDistanciasIdentidad n =
  sum (minimasDistancias (identity n))
 
-- 2ª definición de sumaMinimaDistanciasIdentidad
-- ==============================================
 
sumaMinimaDistanciasIdentidad2 :: Int -> Int
sumaMinimaDistanciasIdentidad2 n =
  n*(n^2-1) `div` 3
 
-- Equivalencia de las definiciones de sumaMinimaDistanciasIdentidad
-- =================================================================
 
-- La propiedad es
prop_MinimaDistanciasIdentidad :: Positive Int -> Bool
prop_MinimaDistanciasIdentidad (Positive n) =
  sumaMinimaDistanciasIdentidad n == sumaMinimaDistanciasIdentidad2 n
 
-- La comprobación es
--    λ> quickCheckWith (stdArgs {maxSize=50}) prop_MinimaDistanciasIdentidad
--    +++ OK, passed 100 tests.
 
-- Comparación de eficiencia de sumaMinimaDistanciasIdentidad
-- ==========================================================
 
-- La comparación es
--    λ> sumaMinimaDistanciasIdentidad 50
--    41650
--    (0.24 secs, 149,395,744 bytes)
--    λ> sumaMinimaDistanciasIdentidad 100
--    333300
--    (1.98 secs, 1,294,676,272 bytes)
--    λ> sumaMinimaDistanciasIdentidad 200
--    2666600
--    (17.96 secs, 11,094,515,016 bytes)
--    
--    λ> sumaMinimaDistanciasIdentidad2 50
--    41650
--    (0.00 secs, 126,944 bytes)
--    λ> sumaMinimaDistanciasIdentidad2 100
--    333300
--    (0.00 secs, 126,872 bytes)
--    λ> sumaMinimaDistanciasIdentidad2 200
--    2666600
--    (0.00 secs, 131,240 bytes)
--
-- Resumidamente, el tiempo es
--
--    +-----+---------+--------+
--    |   n | 1ª def. | 2ª def |
--    +-----+---------+--------+
--    |  50 |  0.24   | 0.00   |
--    | 100 |  1.98   | 0.00   |
--    | 200 | 17.96   | 0.00   | 
--    +-----+---------+--------+

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Matriz de mínimas distancias

Definir las funciones

   minimasDistancias             :: Matrix Int -> Matrix Int
   sumaMinimaDistanciasIdentidad :: Int -> Int

tales que

  • (mininasDistancias a) es la matriz de las mínimas distancias de cada elemento de a hasta alcanzar un 1 donde un paso es un movimiento hacia la izquierda, derecha, arriba o abajo. Por ejemplo,
     λ> minimasDistancias (fromLists [[0,1,1],[0,0,1]])
     ( 1 0 0 )
     ( 2 1 0 )
     λ> minimasDistancias (fromLists [[0,0,1],[1,0,0]])
     ( 1 1 0 )
     ( 0 1 1 )
     λ> minimasDistancias (identity 5)
     ( 0 1 2 3 4 )
     ( 1 0 1 2 3 )
     ( 2 1 0 1 2 )
     ( 3 2 1 0 1 )
     ( 4 3 2 1 0 )
  • (sumaMinimaDistanciasIdentidad n) es la suma de los elementos de la matriz de las mínimas distancias correspondiente a la matriz identidad de orden n. Por ejemplo,
     sumaMinimaDistanciasIdentidad 5       ==  40
     sumaMinimaDistanciasIdentidad (10^2)  ==  333300
     sumaMinimaDistanciasIdentidad (10^4)  ==  333333330000
     sumaMinimaDistanciasIdentidad (10^6)  ==  333333333333000000

Soluciones

import Data.Matrix
import Data.Maybe (isJust, fromJust)
import Test.QuickCheck
 
-- Definición de minimasDistancias
-- ===============================
 
minimasDistancias :: Matrix Int -> Matrix Int
minimasDistancias a = fmap fromJust (aux (matrizInicial a))
  where aux b | Nothing `elem` c = aux c
              | otherwise        = c
          where c = propagacion b
 
-- (matrizInicial a) es la matriz que tiene (Just 0) en los elementos de
-- a iguales a 1 y Nothing en los restantes. Por ejemplo,
--    λ> matrizInicial (fromLists [[0,0,1],[1,0,0]])
--    ( Nothing Nothing  Just 0 )
--    (  Just 0 Nothing Nothing )
matrizInicial :: Matrix Int -> Matrix (Maybe Int)
matrizInicial a = matrix m n f
  where m = nrows a
        n = ncols a
        f (i,j) | a ! (i,j) == 1 = Just 0
                | otherwise      = Nothing
 
-- (propagacion a) es la matriz obtenida cambiando los elementos Nothing
-- de a por el sigiente del mínomo de los valores de sus vecinos. Por
-- ejemplo,
--    λ> propagacion (fromLists [[0,1,1],[0,0,1]])
--    (  Just 1  Just 0  Just 0 )
--    ( Nothing  Just 1  Just 0 )
--    
--    λ> propagacion it
--    ( Just 1 Just 0 Just 0 )
--    ( Just 2 Just 1 Just 0 )
propagacion :: Matrix (Maybe Int) -> Matrix (Maybe Int)
propagacion a = matrix m n f
  where
    m = nrows a
    n = ncols a
    f (i,j) | isJust x  = x
            | otherwise = siguiente (minimo (valoresVecinos a (i,j)))
      where x = a ! (i,j)
 
-- (valoresVecinos a p) es la lista de los valores de los vecinos la
-- posición p en la matriz a. Por ejemplo,             
--    λ> a = fromList 3 4 [1..]
--    λ> a
--    (  1  2  3  4 )
--    (  5  6  7  8 )
--    (  9 10 11 12 )
--    
--    λ> valoresVecinos a (1,1)
--    [5,2]
--    λ> valoresVecinos a (2,3)
--    [3,11,6,8]
--    λ> valoresVecinos a (2,4)
--    [4,12,7]
valoresVecinos :: Matrix a -> (Int,Int) -> [a]
valoresVecinos a (i,j) = [a ! (k,l) | (k,l) <- vecinos m n (i,j)]
  where m = nrows a
        n = ncols a
 
-- (vecinos m n p) es la lista de las posiciones vecinas de la posición
-- p en la matriz a; es decir, los que se encuentran a su izquierda,
-- derecha, arriba o abajo. por ejemplo,
--    vecinos 3 4 (1,1)  ==  [(2,1),(1,2)]
--    vecinos 3 4 (2,3)  ==  [(1,3),(3,3),(2,2),(2,4)]
--    vecinos 3 4 (2,4)  ==  [(1,4),(3,4),(2,3)]
vecinos :: Int -> Int -> (Int,Int) -> [(Int,Int)]
vecinos m n (i,j) = [(i - 1,j)     | i > 1] ++
                    [(i + 1,j)     | i < m] ++
                    [(i,    j - 1) | j > 1] ++
                    [(i,    j + 1) | j < n]
 
-- (minimo xs) es el mínimo de la lista de valores opcionales xs
-- (considerando Nothing como el mayor elemento). Por ejemplo,
--    minimo [Just 3, Nothing, Just 2]  ==  Just 2
minimo :: [Maybe Int] -> Maybe Int
minimo = foldr1 minimo2
 
-- (minimo2 x y) es el mínimo de los valores opcionales x e y
-- (considerando Nothing como el mayor elemento). Por ejemplo,
--    minimo2 (Just 3) (Just 2)  ==  Just 2
--    minimo2 (Just 1) (Just 2)  ==  Just 1
--    minimo2 (Just 1) Nothing   ==  Just 1
--    minimo2 Nothing (Just 2)   ==  Just 2
--    minimo2 Nothing Nothing    ==  Nothing
minimo2 :: Maybe Int -> Maybe Int -> Maybe Int
minimo2 (Just x) (Just y) = Just (min x y)
minimo2 Nothing  (Just y) = Just y
minimo2 (Just x) Nothing  = Just x
minimo2 Nothing  Nothing  = Nothing
 
-- (siguiente x) es el siguiente elemento del opcional x (considerando
-- Nothing como el infinito). Por ejemplo, 
--    siguiente (Just 3)  ==  Just 4
--    siguiente Nothing  ==  Nothing
siguiente :: Maybe Int -> Maybe Int
siguiente (Just x) = Just (1 + x)
siguiente Nothing  = Nothing
 
-- 1ª definición de sumaMinimaDistanciasIdentidad
-- ==============================================
 
sumaMinimaDistanciasIdentidad :: Int -> Int
sumaMinimaDistanciasIdentidad n =
  sum (minimasDistancias (identity n))
 
-- 2ª definición de sumaMinimaDistanciasIdentidad
-- ==============================================
 
sumaMinimaDistanciasIdentidad2 :: Int -> Int
sumaMinimaDistanciasIdentidad2 n =
  n*(n^2-1) `div` 3
 
-- Equivalencia de las definiciones de sumaMinimaDistanciasIdentidad
-- =================================================================
 
-- La propiedad es
prop_MinimaDistanciasIdentidad :: Positive Int -> Bool
prop_MinimaDistanciasIdentidad (Positive n) =
  sumaMinimaDistanciasIdentidad n == sumaMinimaDistanciasIdentidad2 n
 
-- La comprobación es
--    λ> quickCheckWith (stdArgs {maxSize=50}) prop_MinimaDistanciasIdentidad
--    +++ OK, passed 100 tests.
 
-- Comparación de eficiencia
-- =========================
 
-- La comparación es
--    λ> sumaMinimaDistanciasIdentidad 50
--    41650
--    (0.24 secs, 149,395,744 bytes)
--    λ> sumaMinimaDistanciasIdentidad 100
--    333300
--    (1.98 secs, 1,294,676,272 bytes)
--    λ> sumaMinimaDistanciasIdentidad 200
--    2666600
--    (17.96 secs, 11,094,515,016 bytes)
--    
--    λ> sumaMinimaDistanciasIdentidad2 50
--    41650
--    (0.00 secs, 126,944 bytes)
--    λ> sumaMinimaDistanciasIdentidad2 100
--    333300
--    (0.00 secs, 126,872 bytes)
--    λ> sumaMinimaDistanciasIdentidad2 200
--    2666600
--    (0.00 secs, 131,240 bytes)
--
-- Resumidamente, el tiempo es
--
--    +-----+---------+--------+
--    |   n | 1ª def. | 2ª def |
--    +-----+---------+--------+
--    |  50 |  0.24   | 0.00   |
--    | 100 |  1.98   | 0.00   |
--    | 200 | 17.96   | 0.00   | 
--    +-----+---------+--------+

Pensamiento

La primavera ha venido.
Nadie sabe como ha sido.

Antonio Machado

Distancia de Hamming

La distancia de Hamming entre dos listas es el número de posiciones en que los correspondientes elementos son distintos. Por ejemplo, la distancia de Hamming entre “roma” y “loba” es 2 (porque hay 2 posiciones en las que los elementos correspondientes son distintos: la 1ª y la 3ª).

Definir la función

   distancia :: Eq a => [a] -> [a] -> Int

tal que (distancia xs ys) es la distancia de Hamming entre xs e ys. Por ejemplo,

   distancia "romano" "comino"  ==  2
   distancia "romano" "camino"  ==  3
   distancia "roma"   "comino"  ==  2
   distancia "roma"   "camino"  ==  3
   distancia "romano" "ron"     ==  1
   distancia "romano" "cama"    ==  2
   distancia "romano" "rama"    ==  1

Comprobar con QuickCheck si la distancia de Hamming tiene la siguiente propiedad

   distancia(xs,ys) = 0 si, y sólo si, xs = ys

y, en el caso de que no se verifique, modificar ligeramente la propiedad para obtener una condición necesaria y suficiente de distancia(xs,ys) = 0.

Soluciones

import Test.QuickCheck
 
-- 1ª definición:
distancia :: Eq a => [a] -> [a] -> Int
distancia xs ys = length [(x,y) | (x,y) <- zip xs ys, x /= y] 
 
-- 2ª definición:
distancia2 :: Eq a => [a] -> [a] -> Int
distancia2 [] ys = 0
distancia2 xs [] = 0
distancia2 (x:xs) (y:ys) | x /= y    = 1 + distancia2 xs ys
                         | otherwise = distancia2 xs ys
 
-- La propiedad es
prop_distancia1 :: [Int] -> [Int] -> Bool
prop_distancia1 xs ys =
    (distancia xs ys == 0) == (xs == ys)
 
-- La comprobación es
--    ghci> quickCheck prop_distancia1
--    *** Failed! Falsifiable (after 2 tests and 1 shrink): 
--    []
--    [1]
-- 
-- En efecto,
--    ghci> distancia [] [1] == 0
--    True
--    ghci> [] == [1]
--    False
-- 
-- La primera modificación es restringir la propiedad a lista de igual
-- longitud: 
prop_distancia2 :: [Int] -> [Int] -> Property
prop_distancia2 xs ys =
    length xs == length ys ==> 
    (distancia xs ys == 0) == (xs == ys)
 
-- La comprobación es
--    ghci> quickCheck prop_distancia2
--    *** Gave up! Passed only 33 tests.
 
-- Nota. La propiedad se verifica, pero al ser la condición demasiado
-- restringida sólo 33 de los casos la cumple.
 
-- La segunda restricción es limitar las listas a la longitud de la más
-- corta: 
prop_distancia3 :: [Int] -> [Int] -> Bool
prop_distancia3 xs ys =
    (distancia xs ys == 0) == (take n xs == take n ys)
    where n = min (length xs) (length ys)
 
-- La comprobación es
--    ghci> quickCheck prop_distancia3
--    +++ OK, passed 100 tests.

Pensamiento

En mi soledad/
he visto cosas muy claras,
que no son verdad.

Antonio Machado