Matrices de Hadamard

Las matrices de Hadamard se definen recursivamente como sigue

En general, la n-ésima matriz de Hadamard, H(n), es

Definir la función

tal que (hadamard n) es la n-ésima matriz de Hadamard.

Comprobar con QuickCheck que para todo número natural n, el producto de la n-ésima matriz de Hadamard y su traspuesta es igual al producto de 2^n por la matriz identidad de orden 2^n.

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Matrices de Hadamard

Las matrices de Hadamard se definen recursivamente como sigue

En general, la n-ésima matriz de Hadamard, H(n), es

Definir la función

tal que (hadamard n) es la n-ésima matriz de Hadamard.

Comprobar con QuickCheck que para todo número natural n, el producto de la n-ésima matriz de Hadamard y su traspuesta es igual al producto de 2^n por la matriz identidad de orden 2^n.

Soluciones