Menu Close

Etiqueta: fromInteger

Número de divisores

Definir la función

   numeroDivisores :: Integer -> Integer

tal que (numeroDivisores x) es el número de divisores de x. Por ejemplo,

   numeroDivisores 12  ==  6
   numeroDivisores 25  ==  3
   length (show (numeroDivisores (product [1..3*10^4])))  ==  1948

Soluciones

import Data.List (genericLength, group, inits)
import Data.Numbers.Primes (primeFactors)
import Test.QuickCheck
 
-- 1ª solución
-- ===========
 
numeroDivisores1 :: Integer -> Integer
numeroDivisores1 x =
  genericLength [y | y <- [1..x], x `mod` y == 0]
 
-- 2ª solución
-- ===========
 
numeroDivisores2 :: Integer -> Integer
numeroDivisores2 1 = 1
numeroDivisores2 x
  | esCuadrado x = 2 * genericLength [y | y <- [1..raizEntera x], x `mod` y == 0] - 1
  | otherwise    = 2 * genericLength [y | y <- [1..raizEntera x], x `mod` y == 0]
 
-- (raizEntera x) es el mayor número entero cuyo cuadrado es menor o
-- igual que x. Por ejemplo,
--    raizEntera 3  ==  1
--    raizEntera 4  ==  2
--    raizEntera 5  ==  2
--    raizEntera 8  ==  2
--    raizEntera 9  ==  3
raizEntera :: Integer -> Integer
raizEntera x = floor (sqrt (fromInteger x))
 
-- (esCuadrado x) se verifica si x es un cuadrado perfecto. Por ejemplo,
--    esCuadrado 9  ==  True
--    esCuadrado 7  ==  False
esCuadrado :: Integer -> Bool
esCuadrado x =
  x == (raizEntera x)^2
 
-- 3ª solución
-- ===========
 
numeroDivisores3 :: Integer -> Integer
numeroDivisores3 =
  genericLength . divisores
 
-- (divisores x) es la lista de los divisores de x. Por ejemplo,
--    divisores 12  ==  [1,3,2,6,4,12]
--    divisores 25  ==  [1,5,25]
divisores :: Integer -> [Integer]
divisores = map (product . concat)
          . productoCartesiano
          . map inits
          . group
          . primeFactors
 
-- (productoCartesiano xss) es el producto cartesiano de los conjuntos
-- xss. Por ejemplo,
--    λ> productoCartesiano [[1,3],[2,5],[6,4]]
--    [[1,2,6],[1,2,4],[1,5,6],[1,5,4],[3,2,6],[3,2,4],[3,5,6],[3,5,4]]
productoCartesiano :: [[a]] -> [[a]]
productoCartesiano []       = [[]]
productoCartesiano (xs:xss) =
  [x:ys | x <- xs, ys <- productoCartesiano xss]
 
-- 4ª solución
-- ===========
 
numeroDivisores4 :: Integer -> Integer
numeroDivisores4 = genericLength
                 . map (product . concat)
                 . sequence
                 . map inits
                 . group
                 . primeFactors
 
-- 5ª solución
-- ===========
 
numeroDivisores5 :: Integer -> Integer
numeroDivisores5 =
  product . map ((+1) . genericLength) . group . primeFactors
 
-- Comprobación de equivalencia
-- ============================
 
-- La propiedad es
prop_numeroDivisores :: Positive Integer -> Bool
prop_numeroDivisores (Positive x) =
  all (== numeroDivisores1 x)
      [ numeroDivisores2 x
      , numeroDivisores3 x
      , numeroDivisores4 x
      , numeroDivisores5 x]
 
-- La comprobación es
--    λ> quickCheck prop_numeroDivisores
--    +++ OK, passed 100 tests.
 
-- Comparación de eficiencia
-- =========================
 
-- La comparación es
--    λ> numeroDivisores1 (product [1..10])
--    270
--    (1.67 secs, 726,327,208 bytes)
--    λ> numeroDivisores2 (product [1..10])
--    270
--    (0.01 secs, 929,000 bytes)
--
--    λ> numeroDivisores2 (product [1..16])
--    5376
--    (2.10 secs, 915,864,664 bytes)
--    λ> numeroDivisores3 (product [1..16])
--    5376
--    (0.01 secs, 548,472 bytes)
--
--    λ> numeroDivisores3 (product [1..30])
--    2332800
--    (3.80 secs, 4,149,811,688 bytes)
--    λ> numeroDivisores4 (product [1..30])
--    2332800
--    (0.59 secs, 722,253,848 bytes)
--    λ> numeroDivisores5 (product [1..30])
--    2332800
--    (0.00 secs, 587,856 bytes)

El código se encuentra en GitHub.

Cálculo de dígitos de pi y su distribución

Se pueden generar los dígitos de Pi, como se explica en el artículo Unbounded spigot algorithms for the digits of pi c0on la función digitosPi definida por

   digitosPi :: [Integer]
   digitosPi = g(1,0,1,1,3,3) where
     g (q,r,t,k,n,l) = 
       if 4*q+r-t < n*t
       then n : g (10*q, 10*(r-n*t), t, k, div (10*(3*q+r)) t - 10*n, l)
       else g (q*k, (2*q+r)*l, t*l, k+1, div (q*(7*k+2)+r*l) (t*l), l+2)

Por ejemplo,

   λ> take 25 digitosPi
   [3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3,2,3,8,4,6,2,6,4,3]

La distribución de los primeros 25 dígitos de pi es [0,2,3,5,3,3,3,1,2,3] ya que el 0 no aparece, el 1 ocurre 2 veces, el 3 ocurre 3 veces, el 4 ocurre 5 veces, …

Usando digitosPi, definir las siguientes funciones

   distribucionDigitosPi :: Int -> [Int]
   frecuenciaDigitosPi   :: Int -> [Double]

tales que

  • (distribucionDigitosPi n) es la distribución de los n primeros dígitos de pi. Por ejemplo,
     λ> distribucionDigitosPi 10
     [0,2,1,2,1,2,1,0,0,1]
     λ> distribucionDigitosPi 100
     [8,8,12,12,10,8,9,8,12,13]
     λ> distribucionDigitosPi 1000
     [93,116,103,103,93,97,94,95,101,105]
     λ> distribucionDigitosPi 5000
     [466,531,496,460,508,525,513,488,492,521]
  • (frecuenciaDigitosPi n) es la frecuencia de los n primeros dígitos de pi. Por ejemplo,
   λ> frecuenciaDigitosPi 10
   [0.0,20.0,10.0,20.0,10.0,20.0,10.0,0.0,0.0,10.0]
   λ> frecuenciaDigitosPi 100
   [8.0,8.0,12.0,12.0,10.0,8.0,9.0,8.0,12.0,13.0]
   λ> frecuenciaDigitosPi 1000
   [9.3,11.6,10.3,10.3,9.3,9.7,9.4,9.5,10.1,10.5]
   λ> frecuenciaDigitosPi 5000
   [9.32,10.62,9.92,9.2,10.16,10.5,10.26,9.76,9.84,10.42]

Soluciones

import Data.Array
import Data.List (group, sort)
 
digitosPi :: [Integer]
digitosPi = g(1,0,1,1,3,3) where
  g (q,r,t,k,n,l) = 
    if 4*q+r-t < n*t
    then n : g (10*q, 10*(r-n*t), t, k, div (10*(3*q+r)) t - 10*n, l)
    else g (q*k, (2*q+r)*l, t*l, k+1, div (q*(7*k+2)+r*l) (t*l), l+2)
 
-- 1ª definición
-- =============
 
distribucionDigitosPi :: Int -> [Int]
distribucionDigitosPi n =
  elems (accumArray (+) 0 (0,9) [ (i,1)
                                | i <- take n digitosPi]) 
 
frecuenciaDigitosPi :: Int -> [Double]
frecuenciaDigitosPi n =
  [100 * (fromIntegral x / m) | x <- distribucionDigitosPi n]
  where m = fromIntegral n
 
-- 2ª definición
-- =============
 
distribucionDigitosPi2 :: Int -> [Int]
distribucionDigitosPi2 n =
  [length xs - 1 | xs <- group (sort (take n digitosPi ++ [0..9]))]
 
frecuenciaDigitosPi2 :: Int -> [Double]
frecuenciaDigitosPi2 n =
  [100 * (fromIntegral x / m) | x <- distribucionDigitosPi2 n]
  where m = fromIntegral n
 
-- Comparación de eficiencia
-- =========================
 
--    λ> last (take 5000 digitosPi)
--    2
--    (4.47 secs, 3,927,848,448 bytes)
--    λ> frecuenciaDigitosPi 5000
--    [9.32,10.62,9.92,9.2,10.16,10.5,10.26,9.76,9.84,10.42]
--    (0.01 secs, 0 bytes)
--    λ> frecuenciaDigitosPi2 5000
--    [9.32,10.62,9.92,9.2,10.16,10.5,10.26,9.76,9.84,10.42]
--    (0.02 secs, 0 bytes)

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Cálculo de dígitos de pi y su distribución

Se pueden generar los dígitos de Pi, como se explica en el artículo Unbounded spigot algorithms for the digits of pi c0on la función digitosPi definida por

   digitosPi :: [Integer]
   digitosPi = g(1,0,1,1,3,3) where
     g (q,r,t,k,n,l) = 
       if 4*q+r-t < n*t
       then n : g (10*q, 10*(r-n*t), t, k, div (10*(3*q+r)) t - 10*n, l)
       else g (q*k, (2*q+r)*l, t*l, k+1, div (q*(7*k+2)+r*l) (t*l), l+2)

Por ejemplo,

   λ> take 25 digitosPi
   [3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3,2,3,8,4,6,2,6,4,3]

La distribución de los primeros 25 dígitos de pi es [0,2,3,5,3,3,3,1,2,3] ya que el 0 no aparece, el 1 ocurre 2 veces, el 3 ocurre 3 veces, el 4 ocurre 5 veces, …

Usando digitosPi, definir las siguientes funciones

   distribucionDigitosPi :: Int -> [Int]
   frecuenciaDigitosPi   :: Int -> [Double]

tales que

  • (distribucionDigitosPi n) es la distribución de los n primeros dígitos de pi. Por ejemplo,
     λ> distribucionDigitosPi 10
     [0,2,1,2,1,2,1,0,0,1]
     λ> distribucionDigitosPi 100
     [8,8,12,12,10,8,9,8,12,13]
     λ> distribucionDigitosPi 1000
     [93,116,103,103,93,97,94,95,101,105]
     λ> distribucionDigitosPi 5000
     [466,531,496,460,508,525,513,488,492,521]
  • (frecuenciaDigitosPi n) es la frecuencia de los n primeros dígitos de pi. Por ejemplo,
   λ> frecuenciaDigitosPi 10
   [0.0,20.0,10.0,20.0,10.0,20.0,10.0,0.0,0.0,10.0]
   λ> frecuenciaDigitosPi 100
   [8.0,8.0,12.0,12.0,10.0,8.0,9.0,8.0,12.0,13.0]
   λ> frecuenciaDigitosPi 1000
   [9.3,11.6,10.3,10.3,9.3,9.7,9.4,9.5,10.1,10.5]
   λ> frecuenciaDigitosPi 5000
   [9.32,10.62,9.92,9.2,10.16,10.5,10.26,9.76,9.84,10.42]

Soluciones

import Data.Array
import Data.List (group, sort)
 
digitosPi :: [Integer]
digitosPi = g(1,0,1,1,3,3) where
  g (q,r,t,k,n,l) = 
    if 4*q+r-t < n*t
    then n : g (10*q, 10*(r-n*t), t, k, div (10*(3*q+r)) t - 10*n, l)
    else g (q*k, (2*q+r)*l, t*l, k+1, div (q*(7*k+2)+r*l) (t*l), l+2)
 
-- 1ª definición
-- =============
 
distribucionDigitosPi :: Int -> [Int]
distribucionDigitosPi n =
    elems (accumArray (+) 0 (0,9) [(i,1)
                                  | i <- take n digitosPi]) 
 
frecuenciaDigitosPi :: Int -> [Double]
frecuenciaDigitosPi n =
  [100 * (fromIntegral x / m) | x <- distribucionDigitosPi n]
  where m = fromIntegral n
 
-- 2ª definición
-- =============
 
distribucionDigitosPi2 :: Int -> [Int]
distribucionDigitosPi2 n =
  [length xs - 1 | xs <- group (sort (take n digitosPi ++ [0..9]))]
 
frecuenciaDigitosPi2 :: Int -> [Double]
frecuenciaDigitosPi2 n =
  [100 * (fromIntegral x / m) | x <- distribucionDigitosPi2 n]
  where m = fromIntegral n
 
-- Comparación de eficiencia
-- =========================
 
--    λ> last (take 5000 digitosPi)
--    2
--    (4.47 secs, 3,927,848,448 bytes)
--    λ> frecuenciaDigitosPi 5000
--    [9.32,10.62,9.92,9.2,10.16,10.5,10.26,9.76,9.84,10.42]
--    (0.01 secs, 0 bytes)
--    λ> frecuenciaDigitosPi2 5000
--    [9.32,10.62,9.92,9.2,10.16,10.5,10.26,9.76,9.84,10.42]
--    (0.02 secs, 0 bytes)

Pensamiento

¿Cuál es la verdad? ¿El río
que fluye y pasa
donde el barco y el barquero
son también ondas de agua?
¿O este soñar del marino
siempre con ribera y ancla?

Antonio Machado

Dígitos iniciales

Definir las funciones

   digitosIniciales        :: [Int]
   graficaDigitosIniciales :: Int -> IO ()

tales que

  • digitosIniciales es la lista de los dígitos iniciales de los números naturales. Por ejemplo,
     λ> take 100 digitosIniciales
     [0,1,2,3,4,5,6,7,8,9,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,
      3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,
      6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,
      9,9,9,9,9,9,9,9,9,9]
  • (graficaDigitosIniciales n) dibuja la gráfica de los primeros n términos de la sucesión digitosIniciales. Por ejemplo, (graficaDigitosIniciales 100) dibuja
    Digitos_iniciales_100
    y (graficaDigitosIniciales 1000) dibuja
    Digitos_iniciales_1000

Soluciones

import Graphics.Gnuplot.Simple
 
-- 1ª definición
-- =============
 
digitosIniciales :: [Int]
digitosIniciales = map digitoInicial [0..]
 
digitoInicial :: Integer -> Int
digitoInicial n = read [head (show n)]
 
-- 2ª definición
-- =============
 
digitosIniciales2 :: [Int]
digitosIniciales2 = map (read . return . head . show) [0..]
 
-- 3ª definición
-- =============
 
digitosIniciales3 :: [Int]
digitosIniciales3 = map digitoInicial3 [0..]
 
digitoInicial3 :: Integer -> Int
digitoInicial3 = fromInteger . until (< 10) (`div` 10)
 
-- 4ª definición
-- =============
 
digitosIniciales4 :: [Int]
digitosIniciales4 = map (fromInteger . until (< 10) (`div` 10)) [0..]
 
-- 5ª definición
-- =============
 
digitosIniciales5 :: [Int]
digitosIniciales5 =
  0 : concat [replicate k x | k <- [10^n | n <- [0..]]
                            , x <- [1..9]]
 
-- Comparación de eficiencia
-- =========================
 
--    λ> digitosIniciales !! (2*10^6)
--    2
--    (0.46 secs, 320,145,984 bytes)
--    λ> digitosIniciales2 !! (2*10^6)
--    2
--    (0.46 secs, 320,143,288 bytes)
--    λ> digitosIniciales3 !! (2*10^6)
--    2
--    (0.17 secs, 320,139,216 bytes)
--    λ> digitosIniciales4 !! (2*10^6)
--    2
--    (0.55 secs, 320,139,248 bytes)
--    λ> digitosIniciales5 !! (2*10^6)
--    2
--    (0.12 secs, 224,158,992 bytes)
 
graficaDigitosIniciales :: Int -> IO ()
graficaDigitosIniciales n =
  plotList [ Key Nothing
           , Title ("graficaDigitosIniciales " ++ show n)
           , PNG ("Digitos_iniciales_" ++ show n ++ ".png" )
           ]
           (take n digitosIniciales)

Distribución de dígitos de pi

Se pueden generar los dígitos de Pi, como se explica en el artículo Unbounded spigot algorithms for the digits of pi, con la función digitosPi definida por

   digitosPi :: [Integer]
   digitosPi = g(1,0,1,1,3,3) where
     g (q,r,t,k,n,l) = 
       if 4*q+r-t < n*t
       then n : g (10*q, 10*(r-n*t), t, k, div (10*(3*q+r)) t - 10*n, l)
       else g (q*k, (2*q+r)*l, t*l, k+1, div (q*(7*k+2)+r*l) (t*l), l+2)

Por ejemplo,

   λ> take 25 digitosPi
   [3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3,2,3,8,4,6,2,6,4,3]

La distribución de los primeros 25 dígitos de pi es [0,2,3,5,3,3,3,1,2,3] ya que el 0 no aparece, el 1 ocurre 2 veces, el 3 ocurre 3 veces, el 4 ocurre 5 veces, …

Usando digitosPi, definir las siguientes funciones

   distribucionDigitosPi :: Int -> [Int]
   frecuenciaDigitosPi   :: Int -> [Double]

tales que

  • (distribucionDigitosPi n) es la distribución de los n primeros dígitos de pi. Por ejemplo,
     λ> distribucionDigitosPi 10
     [0,2,1,2,1,2,1,0,0,1]
     λ> distribucionDigitosPi 100
     [8,8,12,12,10,8,9,8,12,13]
     λ> distribucionDigitosPi 1000
     [93,116,103,103,93,97,94,95,101,105]
     λ> distribucionDigitosPi 5000
     [466,531,496,460,508,525,513,488,492,521]
  • (frecuenciaDigitosPi n) es la frecuencia de los n primeros dígitos de pi. Por ejemplo,
   λ> frecuenciaDigitosPi 10
   [0.0,20.0,10.0,20.0,10.0,20.0,10.0,0.0,0.0,10.0]
   λ> frecuenciaDigitosPi 100
   [8.0,8.0,12.0,12.0,10.0,8.0,9.0,8.0,12.0,13.0]
   λ> frecuenciaDigitosPi 1000
   [9.3,11.6,10.3,10.3,9.3,9.7,9.4,9.5,10.1,10.5]
   λ> frecuenciaDigitosPi 5000
   [9.32,10.62,9.92,9.2,10.16,10.5,10.26,9.76,9.84,10.42]

Soluciones

import Data.Array
import Data.List (group, sort)
 
digitosPi :: [Integer]
digitosPi = g(1,0,1,1,3,3) where
  g (q,r,t,k,n,l) = 
    if 4*q+r-t < n*t
    then n : g (10*q, 10*(r-n*t), t, k, div (10*(3*q+r)) t - 10*n, l)
    else g (q*k, (2*q+r)*l, t*l, k+1, div (q*(7*k+2)+r*l) (t*l), l+2)
 
-- 1ª definición
-- =============
 
distribucionDigitosPi :: Int -> [Int]
distribucionDigitosPi n =
    elems (accumArray (+) 0 (0,9) [(i,1)
                                  | i <- take n digitosPi]) 
 
frecuenciaDigitosPi :: Int -> [Double]
frecuenciaDigitosPi n =
  [100 * (fromIntegral x / m) | x <- distribucionDigitosPi n]
  where m = fromIntegral n
 
-- 2ª definición
-- =============
 
distribucionDigitosPi2 :: Int -> [Int]
distribucionDigitosPi2 n =
  [length xs - 1 | xs <- group (sort (take n digitosPi ++ [0..9]))]
 
frecuenciaDigitosPi2 :: Int -> [Double]
frecuenciaDigitosPi2 n =
  [100 * (fromIntegral x / m) | x <- distribucionDigitosPi2 n]
  where m = fromIntegral n
 
-- Comparación de eficiencia
-- =========================
 
--    λ> last (take 5000 digitosPi)
--    2
--    (4.47 secs, 3,927,848,448 bytes)
--    λ> frecuenciaDigitosPi 5000
--    [9.32,10.62,9.92,9.2,10.16,10.5,10.26,9.76,9.84,10.42]
--    (0.01 secs, 0 bytes)
--    λ> frecuenciaDigitosPi2 5000
--    [9.32,10.62,9.92,9.2,10.16,10.5,10.26,9.76,9.84,10.42]
--    (0.02 secs, 0 bytes)