Menu Close

Etiqueta: even

Reconocimiento de potencias de 2

Definir la función

   esPotenciaDeDos :: Integer -> Bool

tal que (esPotenciaDeDos n) se verifica si n es una potencia de dos (suponiendo que n es mayor que 0). Por ejemplo.

   esPotenciaDeDos    1        == True
   esPotenciaDeDos    2        == True
   esPotenciaDeDos    6        == False
   esPotenciaDeDos    8        == True
   esPotenciaDeDos 1024        == True
   esPotenciaDeDos 1026        == False
   esPotenciaDeDos (2^(10^8))  == True

Soluciones

import Data.Bits ((.&.))
import Data.Numbers.Primes (primeFactors)
import Test.QuickCheck (Positive (Positive), quickCheck)
 
-- 1ª solución
-- ===========
 
esPotenciaDeDos1 :: Integer -> Bool
esPotenciaDeDos1 1 = True
esPotenciaDeDos1 n
  | even n    = esPotenciaDeDos1 (n `div` 2)
  | otherwise = False
 
-- 2ª solución
-- ===========
 
esPotenciaDeDos2 :: Integer -> Bool
esPotenciaDeDos2 n = n ==
  head (dropWhile (<n) potenciasDeDos)
 
-- potenciasDeDos es la lista de las potencias de dos. Por ejemplo,
--    take 10 potenciasDeDos  == [1,2,4,8,16,32,64,128,256,512]
potenciasDeDos :: [Integer]
potenciasDeDos = iterate (*2) 1
 
-- 3ª solución
-- ===========
 
esPotenciaDeDos3 :: Integer -> Bool
esPotenciaDeDos3 x = all (==2) (primeFactors x)
 
-- 4ª solución
-- ===========
 
-- Usando la función (.&.) de la librería Data.Bits. Dicha función
-- calcula el número correspondiente a la conjunción de las
-- representaciones binarias de sus argumentos. Por ejemplo,
--    6 .&. 3 == 2
-- ya que
--    la representación binaria de 6 es     [1,1,0]
--    la representación binaria de 3 es       [1,1]
--    la conjunción es                        [1,0]
--    la representación decimal de [1,0] es   2
--
-- Otros ejemplos:
--    4 .&. 3 ==   [1,0,0] .&.   [1,1] == 0
--    8 .&. 7 == [1,0,0,0] .&. [1,1,1] = 0
 
esPotenciaDeDos4 :: Integer -> Bool
esPotenciaDeDos4 n = n .&. (n-1) == 0
 
-- Comprobación de equivalencia
-- ============================
 
-- La propiedad es
prop_esPotenciaDeDos :: Positive Integer -> Bool
prop_esPotenciaDeDos (Positive n) =
  all (== esPotenciaDeDos1 n)
      [ esPotenciaDeDos2 n
      , esPotenciaDeDos3 n
      , esPotenciaDeDos4 n
      ]
 
-- La comprobación es
--    λ> quickCheck prop_esPotenciaDeDos
--    +++ OK, passed 100 tests.
 
-- Comparación de eficiencia
-- =========================
 
-- La comparación es
--    λ> esPotenciaDeDos1 (2^(3*10^5))
--    True
--    (3.51 secs, 5,730,072,544 bytes)
--    λ> esPotenciaDeDos2 (2^(3*10^5))
--    True
--    (3.12 secs, 5,755,639,952 bytes)
--    λ> esPotenciaDeDos3 (2^(3*10^5))
--    True
--    (2.92 secs, 5,758,872,040 bytes)
--    λ> esPotenciaDeDos4 (2^(3*10^5))
--    True
--    (0.03 secs, 715,152 bytes)

El código se encuentra en GitHub.

Ordenada cíclicamente

Se dice que una sucesión x(1), …, x(n) está ordenada cíclicamente si existe un índice i tal que la sucesión

   x(i), x(i+1), ..., x(n), x(1), ..., x(i-1)

está ordenada crecientemente de forma estricta.

Definir la función

   ordenadaCiclicamente :: Ord a => [a] -> Maybe Int

tal que (ordenadaCiclicamente xs) es el índice a partir del cual está ordenada, si la lista está ordenado cíclicamente y Nothing en caso contrario. Por ejemplo,

   ordenadaCiclicamente [1,2,3,4]      ==  Just 0
   ordenadaCiclicamente [5,8,1,3]      ==  Just 2
   ordenadaCiclicamente [4,6,7,5,1,3]  ==  Nothing
   ordenadaCiclicamente [1,0,3,2]      ==  Nothing
   ordenadaCiclicamente [1,2,0]        ==  Just 2
   ordenadaCiclicamente "cdeab"        ==  Just 3

Nota: Se supone que el argumento es una lista no vacía sin elementos repetidos.

Soluciones

module Ordenada_ciclicamente where
 
import Test.QuickCheck (Arbitrary, Gen, NonEmptyList (NonEmpty), Property,
                        arbitrary, chooseInt, collect, quickCheck)
import Data.List       (nub, sort)
import Data.Maybe      (isJust, listToMaybe)
 
-- 1ª solución
-- ===========
 
ordenadaCiclicamente1 :: Ord a => [a] -> Maybe Int
ordenadaCiclicamente1 xs = aux 0 xs
  where n = length xs
        aux i zs
          | i == n      = Nothing
          | ordenada zs = Just i
          | otherwise   = aux (i+1) (siguienteCiclo zs)
 
-- (ordenada xs) se verifica si la lista xs está ordenada
-- crecientemente. Por ejemplo,
--   ordenada "acd"   ==  True
--   ordenada "acdb"  ==  False
ordenada :: Ord a => [a] -> Bool
ordenada []     = True
ordenada (x:xs) = all (x <) xs && ordenada xs
 
-- (siguienteCiclo xs) es la lista obtenida añadiendo el primer elemento
-- de xs al final del resto de xs. Por ejemplo,
--   siguienteCiclo [3,2,5]  =>  [2,5,3]
siguienteCiclo :: [a] -> [a]
siguienteCiclo []     = []
siguienteCiclo (x:xs) = xs ++ [x]
 
-- 2ª solución
-- ===========
 
ordenadaCiclicamente2 :: Ord a => [a] -> Maybe Int
ordenadaCiclicamente2 xs =
  listToMaybe [n | n <- [0..length xs-1],
                   ordenada (drop n xs ++ take n xs)]
 
-- 3ª solución
-- ===========
 
ordenadaCiclicamente3 :: Ord a => [a] -> Maybe Int
ordenadaCiclicamente3 xs
  | ordenada (bs ++ as) = Just k
  | otherwise           = Nothing
  where (_,k)   = minimum (zip xs [0..])
        (as,bs) = splitAt k xs
 
-- Comprobación de equivalencia
-- ============================
 
-- La propiedad es
prop_ordenadaCiclicamente1 :: NonEmptyList Int -> Bool
prop_ordenadaCiclicamente1 (NonEmpty xs) =
  ordenadaCiclicamente1 xs == ordenadaCiclicamente2 xs
 
-- La comprobación es
--    λ> quickCheck prop_ordenadaCiclicamente1
--    +++ OK, passed 100 tests.
 
-- La propiedad para analizar los casos de prueba
prop_ordenadaCiclicamente2 :: NonEmptyList Int -> Property
prop_ordenadaCiclicamente2 (NonEmpty xs) =
  collect (isJust (ordenadaCiclicamente1 xs)) $
  ordenadaCiclicamente1 xs == ordenadaCiclicamente2 xs
 
-- El análisis es
--    λ> quickCheck prop_ordenadaCiclicamente2
--    +++ OK, passed 100 tests:
--    89% False
--    11% True
 
-- Tipo para generar listas
newtype Lista = L [Int]
  deriving Show
 
-- Generador de listas.
listaArbitraria :: Gen Lista
listaArbitraria = do
  x <- arbitrary
  xs <- arbitrary
  let ys = x : xs
  k <- chooseInt (0, length ys)
  let (as,bs) = splitAt k (sort (nub ys))
  return (L (bs ++ as))
 
-- Lista es una subclase de Arbitrary.
instance Arbitrary Lista where
  arbitrary = listaArbitraria
 
-- La propiedad para analizar los casos de prueba
prop_ordenadaCiclicamente3 :: Lista -> Property
prop_ordenadaCiclicamente3 (L xs) =
  collect (isJust (ordenadaCiclicamente1 xs)) $
  ordenadaCiclicamente1 xs == ordenadaCiclicamente2 xs
 
-- El análisis es
--    λ> quickCheck prop_ordenadaCiclicamente3
--    +++ OK, passed 100 tests (100% True).
 
-- Tipo para generar
newtype Lista2 = L2 [Int]
  deriving Show
 
-- Generador de listas
listaArbitraria2 :: Gen Lista2
listaArbitraria2 = do
  x' <- arbitrary
  xs <- arbitrary
  let ys = x' : xs
  k <- chooseInt (0, length ys)
  let (as,bs) = splitAt k (sort (nub ys))
  n <- chooseInt (0,1)
  return (if even n
          then L2 (bs ++ as)
          else L2 ys)
 
-- Lista es una subclase de Arbitrary.
instance Arbitrary Lista2 where
  arbitrary = listaArbitraria2
 
-- La propiedad para analizar los casos de prueba
prop_ordenadaCiclicamente4 :: Lista2 -> Property
prop_ordenadaCiclicamente4 (L2 xs) =
  collect (isJust (ordenadaCiclicamente1 xs)) $
  ordenadaCiclicamente1 xs == ordenadaCiclicamente2 xs
 
-- El análisis es
--    λ> quickCheck prop_ordenadaCiclicamente4
--    +++ OK, passed 100 tests:
--    51% True
--    49% False
 
-- La propiedad es
prop_ordenadaCiclicamente :: Lista2 -> Bool
prop_ordenadaCiclicamente (L2 xs) =
  all (== ordenadaCiclicamente1 xs)
      [ordenadaCiclicamente2 xs,
       ordenadaCiclicamente3 xs]
 
-- La comprobación es
--    λ> quickCheck prop_ordenadaCiclicamente
--    +++ OK, passed 100 tests.
 
-- Comparación de eficiencia
-- =========================
 
-- La comparación es
--    λ> ordenadaCiclicamente1 ([100..4000] ++ [1..99])
--    Just 3901
--    (3.27 secs, 2,138,864,568 bytes)
--    λ> ordenadaCiclicamente2 ([100..4000] ++ [1..99])
--    Just 3901
--    (2.44 secs, 1,430,040,008 bytes)
--    λ> ordenadaCiclicamente3 ([100..4000] ++ [1..99])
--    Just 3901
--    (1.18 secs, 515,549,200 bytes)

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Separación por posición

Definir la función

   particion :: [a] -> ([a],[a])

tal que (particion xs) es el par cuya primera componente son los elementos de xs en posiciones pares y su segunda componente son los restantes elementos. Por ejemplo,

   particion [3,5,6,2]    ==  ([3,6],[5,2])
   particion [3,5,6,2,7]  ==  ([3,6,7],[5,2])
   particion "particion"  ==  ("priin","atco")

Soluciones

module Separacion_por_posicion where
 
import Data.List (partition)
import qualified Data.Vector as V ((!), fromList, length)
import Test.QuickCheck (quickCheck)
 
-- 1ª solución
-- ===========
 
particion1 :: [a] -> ([a],[a])
particion1 xs = ([x | (n,x) <- nxs, even n],
                 [x | (n,x) <- nxs, odd n])
  where nxs = enumeracion xs
 
--(numeracion xs) es la enumeración de xs. Por ejemplo,
--    enumeracion [7,9,6,8]  ==  [(0,7),(1,9),(2,6),(3,8)]
enumeracion :: [a] -> [(Int,a)]
enumeracion = zip [0..]
 
-- 2ª solución
-- ===========
 
particion2 :: [a] -> ([a],[a])
particion2 []     = ([],[])
particion2 (x:xs) = (x:zs,ys)
  where (ys,zs) = particion2 xs
 
-- 3ª solución
-- ===========
 
particion3 :: [a] -> ([a],[a])
particion3 = foldr f ([],[])
  where f x (ys,zs) = (x:zs,ys)
 
-- 4ª solución
-- ===========
 
particion4 :: [a] -> ([a],[a])
particion4 = foldr (\x (ys,zs) -> (x:zs,ys)) ([],[])
 
-- 5ª solución
-- ===========
 
particion5 :: [a] -> ([a],[a])
particion5 xs =
  ([xs!!k | k <- [0,2..n]],
   [xs!!k | k <- [1,3..n]])
  where n = length xs - 1
 
-- 6ª solución
-- ===========
 
particion6 :: [a] -> ([a],[a])
particion6 xs = (pares xs, impares xs)
 
-- (pares xs) es la lista de los elementos de xs en posiciones
-- pares. Por ejemplo,
--    pares [3,5,6,2]  ==  [3,6]
pares :: [a] -> [a]
pares []     = []
pares (x:xs) = x : impares xs
 
-- (impares xs) es la lista de los elementos de xs en posiciones
-- impares. Por ejemplo,
--    impares [3,5,6,2]  ==  [5,2]
impares :: [a] -> [a]
impares []     = []
impares (_:xs) = pares xs
 
-- 7ª solución
-- ===========
 
particion7 :: [a] -> ([a],[a])
particion7 [] = ([],[])
particion7 xs =
  ([v V.! k | k <- [0,2..n-1]],
   [v V.! k | k <- [1,3..n-1]])
  where v = V.fromList xs
        n = V.length v
 
-- 8ª solución
-- ===========
 
particion8 :: [a] -> ([a],[a])
particion8 xs =
  (map snd ys, map snd zs)
  where (ys,zs) = partition posicionPar (zip [0..] xs)
 
posicionPar :: (Int,a) -> Bool
posicionPar = even . fst
 
-- Comprobación de equivalencia
-- ============================
 
-- La propiedad es
prop_particion :: [Int] -> Bool
prop_particion xs =
  all (== particion1 xs)
      [particion2 xs,
       particion3 xs,
       particion4 xs,
       particion5 xs,
       particion6 xs,
       particion7 xs,
       particion8 xs]
 
-- La comprobación es
--    λ> quickCheck prop_particion
--    +++ OK, passed 100 tests.
 
-- Comparación de eficiencia
-- =========================
 
-- La comparación es
--    λ> last (snd (particion1 [1..6*10^6]))
--    6000000
--    (2.74 secs, 2,184,516,080 bytes)
--    λ> last (snd (particion2 [1..6*10^6]))
--    6000000
--    (2.02 secs, 1,992,515,880 bytes)
--    λ> last (snd (particion3 [1..6*10^6]))
--    6000000
--    (3.17 secs, 1,767,423,240 bytes)
--    λ> last (snd (particion4 [1..6*10^6]))
--    6000000
--    (3.23 secs, 1,767,423,240 bytes)
--    λ> last (snd (particion5 [1..6*10^6]))
--    6000000
--    (1.62 secs, 1,032,516,192 bytes)
--    λ> last (snd (particion5 [1..6*10^6]))
--    6000000
--    (1.33 secs, 1,032,516,192 bytes)
--    λ> last (snd (particion6 [1..6*10^6]))
--    6000000
--    (1.80 secs, 888,515,960 bytes)
--    λ> last (snd (particion7 [1..6*10^6]))
--    6000000
--    (1.29 secs, 1,166,865,672 bytes)
--    λ> last (snd (particion8 [1..6*10^6]))
--    6000000
--    (0.87 secs, 3,384,516,616 bytes)
--
--    λ> last (snd (particion5 [1..10^7]))
--    10000000
--    (1.94 secs, 1,720,516,872 bytes)
--    λ> last (snd (particion7 [1..10^7]))
--    10000000
--    (2.54 secs, 1,989,215,176 bytes)
--    λ> last (snd (particion8 [1..10^7]))
--    10000000
--    (1.33 secs, 5,640,516,960 bytes)

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Reiteración de una función

Definir la función

   reiteracion :: (a -> a) -> Int -> a -> a

tal que (reiteracion f n x) es el resultado de aplicar n veces la función f a x. Por ejemplo,

   reiteracion (+1) 10 5  ==  15
   reiteracion (+5) 10 0  ==  50
   reiteracion (*2)  4 1  ==  16
   reiteracion (5:)  4 [] ==  [5,5,5,5]

Soluciones

import Test.QuickCheck (Fun (..), Positive (..), quickCheck)
 
-- 1ª solución
-- ===========
 
reiteracion1 :: (a -> a) -> Int -> a -> a
reiteracion1 _ 0 x = x
reiteracion1 f n x = f (reiteracion1 f (n-1) x)
 
-- 2ª solución
-- ===========
 
reiteracion2 :: (a -> a) -> Int -> a -> a
reiteracion2 _ 0 = id
reiteracion2 f n = f . reiteracion2 f (n-1)
 
-- 3ª solución
-- ===========
 
reiteracion3 :: (a -> a) -> Int -> a -> a
reiteracion3 _ 0 = id
reiteracion3 f n
  | even n    = reiteracion3 (f . f) (n `div` 2)
  | otherwise = f . reiteracion3 (f . f) (n `div` 2)
 
-- 4ª solución
-- ===========
 
reiteracion4 :: (a -> a) -> Int -> a -> a
reiteracion4 f n x = reiteraciones f x !! n
 
reiteraciones :: (a -> a) -> a -> [a]
reiteraciones f x = x : reiteraciones f (f x)
 
-- 5ª solución
-- ===========
 
reiteracion5 :: (a -> a) -> Int -> a -> a
reiteracion5 f n x = (iterate f x) !! n
 
-- 6ª solución
-- ===========
 
-- Se puede eliminar los argumentos de la definición anterior como sigue:
--    reiteracion4 f n x = iterate f x !! n
--    reiteracion4 f n x = ((!!) (iterate f x)) n
--    reiteracion4 f n x = (((!!) . (iterate f)) x) n
--    reiteracion4 f n x = ((!!) . (iterate f)) x n
--    reiteracion4 f n x = flip ((!!) . (iterate f)) n x
--    reiteracion4 f = flip ((!!) . (iterate f))
--    reiteracion4 f = flip (((!!) .) (iterate f))
--    reiteracion4 f = flip (((!!) .) . iterate) f
--    reiteracion4 f = (flip . ((!!) .) . iterate) f
--    reiteracion4   = flip . ((!!) .) . iterate
 
reiteracion6 :: (a -> a) -> Int -> a -> a
reiteracion6 = flip . ((!!) .) . iterate
 
-- Comprobación de equivalencia
-- ============================
 
-- La propiedad es
prop_reiteracion :: Fun Int Int -> Positive Int -> Int -> Bool
prop_reiteracion (Fun _ f) (Positive n) x =
  all (== reiteracion1 f n x)
      [reiteracion2 f n x,
       reiteracion3 f n x,
       reiteracion4 f n x,
       reiteracion5 f n x,
       reiteracion6 f n x]
 
-- La comprobación es
--    λ> quickCheck prop_reiteracion
--    +++ OK, passed 100 tests.
 
-- Comparación de eficiencia
-- =========================
 
-- La comparación es
--    λ> reiteracion1 (+1) (10^7) 0
--    10000000
--    (5.09 secs, 2,505,392,792 bytes)
--    λ> reiteracion2 (+1) (10^7) 0
--    10000000
--    (5.45 secs, 2,896,899,728 bytes)
--    λ> reiteracion3 (+1) (10^7) 0
--    10000000
--    (2.14 secs, 816,909,416 bytes)
--    λ> reiteracion4 (+1) (10^7) 0
--    10000000
--    (4.24 secs, 1,696,899,816 bytes)
--    λ> reiteracion5 (+1) (10^7) 0
--    10000000
--    (2.53 secs, 1,376,899,800 bytes)
--    λ> reiteracion6 (+1) (10^7) 0
--    10000000
--    (2.34 secs, 1,376,899,984 bytes)

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Sucesión fractal

La sucesión fractal

   0, 0, 1, 0, 2, 1, 3, 0, 4, 2, 5, 1, 6, 3, 7, 0, 8, 4, 9, 2, 
   10, 5, 11, 1, 12, 6, 13, 3, 14, 7, 15, ...

está construida de la siguiente forma:

  • los términos pares forman la sucesión de los números naturales
     0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, ...
  • los términos impares forman la misma sucesión original
     0, 0, 1, 0, 2, 1, 3, 0, 4, 2, 5, 1, 6, 3, 7, ...

Definir las funciones

   sucFractal     :: [Integer]
   sumaSucFractal :: Integer -> Integer

tales que

  • sucFractal es la lista de los términos de la sucesión fractal. Por ejemplo,
     take 20 sucFractal   == [0,0,1,0,2,1,3,0,4,2,5,1,6,3,7,0,8,4,9,2]
     sucFractal !! 30     == 15
     sucFractal !! (10^7) == 5000000
  • (sumaSucFractal n) es la suma de los n primeros términos de la sucesión fractal. Por ejemplo,
     sumaSucFractal 10      == 13
     sumaSucFractal (10^5)  == 1666617368
     sumaSucFractal (10^10) == 16666666661668691669
     sumaSucFractal (10^15) == 166666666666666166673722792954
     sumaSucFractal (10^20) == 1666666666666666666616666684103392376198
     length (show (sumaSucFractal (10^15000))) == 30000
     sumaSucFractal (10^15000) `mod` (10^9)    == 455972157

Soluciones

 
-- 1ª definición de sucFractal
-- ===========================
 
sucFractal1 :: [Integer]
sucFractal1 = 
  map termino [0..]
 
-- (termino n) es el término n de la secuencia anterior. Por ejemplo,
--   termino 0            ==  0
--   termino 1            ==  0
--   map termino [0..10]  ==  [0,0,1,0,2,1,3,0,4,2,5]
termino :: Integer -> Integer
termino 0 = 0
termino n 
  | even n    = n `div` 2
  | otherwise = termino (n `div` 2)
 
-- 2ª definición de sucFractal
-- ===========================
 
sucFractal2 :: [Integer]
sucFractal2 =
  0 : 0 : mezcla [1..] (tail sucFractal2)
 
-- (mezcla xs ys) es la lista obtenida intercalando las listas infinitas
-- xs e ys. Por ejemplo,
--    take 10 (mezcla [0,2..] [0,-2..])  ==  [0,0,2,-2,4,-4,6,-6,8,-8]
mezcla :: [Integer] -> [Integer] -> [Integer]
mezcla (x:xs) (y:ys) =
  x : y : mezcla xs ys
 
-- Comparación de eficiencia de definiciones de sucFractal
-- =======================================================
 
--    λ> sum (take (10^6) sucFractal1)
--    166666169612
--    (5.56 secs, 842,863,264 bytes)
--    λ> sum (take (10^6) sucFractal2)
--    166666169612
--    (1.81 secs, 306,262,616 bytes)
 
-- En lo que sigue usaremos la 2ª definición
sucFractal :: [Integer]
sucFractal = sucFractal2
 
-- 1ª definición de sumaSucFractal
-- ===============================
 
sumaSucFractal1 :: Integer -> Integer
sumaSucFractal1 n =
  sum (map termino [0..n-1])
 
-- 2ª definición de sumaSucFractal
-- ===============================
 
sumaSucFractal2 :: Integer -> Integer
sumaSucFractal2 n =
  sum (take (fromIntegral n) sucFractal)
 
-- 3ª definición de sumaSucFractal
-- ===============================
 
sumaSucFractal3 :: Integer -> Integer
sumaSucFractal3 0 = 0
sumaSucFractal3 1 = 0
sumaSucFractal3 n
  | even n    = sumaN (n `div` 2) + sumaSucFractal3 (n `div` 2)
  | otherwise = sumaN ((n+1) `div` 2) + sumaSucFractal3 (n `div` 2)
  where sumaN n = (n*(n-1)) `div` 2
 
-- Comparación de eficiencia de definiciones de sumaSucFractal
-- ===========================================================
 
--    λ> sumaSucFractal1 (10^6)
--    166666169612
--    (5.25 secs, 810,622,504 bytes)
--    λ> sumaSucFractal2 (10^6)
--    166666169612
--    (1.72 secs, 286,444,048 bytes)
--    λ> sumaSucFractal3 (10^6)
--    166666169612
--    (0.01 secs, 0 bytes)
--    
--    λ> sumaSucFractal2 (10^7)
--    16666661685034
--    (17.49 secs, 3,021,580,920 bytes)
--    λ> sumaSucFractal3 (10^7)
--    16666661685034
--    (0.01 secs, 0 bytes)