Recorrido de árboles en espiral

Los árboles se pueden representar mediante el siguiente tipo de datos

Por ejemplo, los árboles

se representan por

Definir la función

tal que (espiral x) es la lista de los nodos del árbol x recorridos en espiral; es decir, la raíz de x, los nodos del primer nivel de izquierda a derecha, los nodos del segundo nivel de derecha a izquierda y así sucesivamente. Por ejemplo,

Soluciones

Celdas interiores de una retícula

Las celdas de una retícula cuadrada se numeran consecutivamente. Por ejemplo, la numeración de la retícula cuadrada de lado 4 es

Los números de sus celdas interiores son 6,7,10,11.

Definir la función

tal que (interiores n) es la lista de los números de las celdas interiores de la retícula cuadrada de lado n. Por ejemplo,

Comprobar con QuickCheck que el número de celdas interiores de la retícula cuadrada de lado n, con n > 1, es (n-2)^2.

Soluciones

Dígitos iniciales

Definir las funciones

tales que

  • digitosIniciales es la lista de los dígitos iniciales de los números naturales. Por ejemplo,

  • (graficaDigitosIniciales n) dibuja la gráfica de los primeros n términos de la sucesión digitosIniciales. Por ejemplo, (graficaDigitosIniciales 100) dibuja
    Digitos_iniciales_100
    y (graficaDigitosIniciales 1000) dibuja
    Digitos_iniciales_1000

Soluciones

Exponentes de Hamming

Los números de Hamming forman una sucesión estrictamente creciente de números que cumplen las siguientes condiciones:

  • El número 1 está en la sucesión.
  • Si x está en la sucesión, entonces 2x, 3x y 5x también están.
  • Ningún otro número está en la sucesión.

Los primeros números de Hamming son 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, …

Los exponentes de un número de Hamming n es una terna (x,y,z) tal que n = 2^x*3^y*5^z. Por ejemplo, los exponentes de 600 son (3,1,2) ya que 600 = 2^x*3^1*5^z.

Definir la sucesión

cuyos elementos son los exponentes de los números de Hamming. Por ejemplo,

Soluciones

Relaciones arbóreas

Como se explica en el ejercicio Relación definida por un árbol, cada árbol binario define una relación binaria donde un elemento x está relacionado con y si x es el padre de y.

Una relación binaria es arbórea si

  • hay exactamente un elemento que no tiene ningún (la raíz del árbol) y
  • todos los elementos tienen dos hijos (los nodos internos) o ninguno (las hojas del árbol).

Definir la función

tal que (arborea r) se verifica si la relación r es arbórea. Por ejemplo,

Soluciones

Sucesión de Lichtenberg

La sucesión de Lichtenberg esta formada por la representación decimal de los números binarios de la sucesión de dígitos 0 y 1 alternados Los primeros términos de ambas sucesiones son

Definir las funciones

tales que

  • lichtenberg es la lista cuyos elementos son los términos de la sucesión de Lichtenberg. Por ejemplo,

  • (graficaLichtenberg n) dibuja la gráfica del número de dígitos de los n primeros términos de la sucesión de Lichtenberg. Por ejemlo, (graficaLichtenberg 100) dibuja
    Sucesion_de_Lichtenberg

Comprobar con QuickCheck que todos los términos de la sucesión de Lichtenberg, a partir del 4º, son números compuestos.

Soluciones

Sucesión de dígitos 0 y 1 alternados

Los primeros términos de la sucesión de los dígitos 0 y 1 alternados son

Definir la lista

tal que sus elementos son los términos de la sucesión de los dígitos 0 y 1 alternados. Por ejemplo,

Soluciones

Complemento potencial

Complemento potencial

El complemento potencial de un número entero positivo x es el menor número y tal que el producto de x por y es un una potencia perfecta. Por ejemplo,

  • el complemento potencial de 12 es 3 ya que 12 y 24 no son potencias perfectas pero 36 sí lo es;
  • el complemento potencial de 54 es 4 ya que 54, 108 y 162 no son potencias perfectas pero 216 = 6^3 sí lo es.

Definir las funciones

tales que

  • (complemento x) es el complemento potencial de x; por ejemplo,

  • (graficaComplementoPotencial n) dibuja la gráfica de los complementos potenciales de los n primeros números enteros positivos. Por ejemplo, (graficaComplementoPotencial 100) dibuja
    Complemento_potencial_100
    y (graficaComplementoPotencial 500) dibuja
    Complemento_potencial_500

Comprobar con QuickCheck que (complemento x) es menor o igual que x.

Soluciones

Terna pitagórica a partir de un lado

Una terna pitagórica con primer lado x es una terna (x,y,z) tal que x^2 + y^2 = z^2. Por ejemplo, las ternas pitagóricas con primer lado 16 son (16,12,20), (16,30,34) y (16,63,65).

Definir las funciones

tales que

  • (ternasPitgoricas x) es la lista de las ternas pitagóricas con primer lado x. Por ejemplo,

  • (mayorTernaPitagorica x) es la mayor de las ternas pitagóricas con primer lado x. Por ejemplo,

  • (graficaMayorHipotenusa n) dibuja la gráfica de las sucesión de las mayores hipotenusas de las ternas pitagóricas con primer lado x, para x entre 3 y n. Por ejemplo, (graficaMayorHipotenusa 100) dibuja
    Terna_pitagorica_a_partir_de_un_lado

Soluciones

Escalada hasta un primo

Este ejercicio está basado en el artículo La conjetura de la «escalada hasta un primo» publicado esta semana por Miguel Ángel Morales en su blog Gaussianos.

La conjetura de escalada hasta un primo trata, propuesta por John Horton Conway, es sencilla de plantear, pero primero vamos a ver qué es eso de escalar hasta un primo. Tomamos un número cualquiera y lo descomponemos en factores primos (colocados en orden ascendente). Si el número era primo, ya hemos acabado; si no era primo, construimos el número formado por los factores primos y los exponentes de los mismos colocados tal cual salen en la factorización. Con el número obtenido hacemos lo mismo que antes. La escalada finaliza cuando obtengamos un número primo. Por ejemplo, para obtener la escalada prima de 1400, como no es primo, se factoriza (obteniéndose 2^3 * 5^2 * 7) y se unen bases y exponentes (obteniéndose 23527). Con el 23527 se repite el proceso obteniéndose la factorización (7 * 3361) y su unión (73361). Como el 73361 es primo, termina la escalada. Por tanto, la escalada de 1400 es [1400,23527,73361].

La conjetura de Conway sobre «escalada hasta un primo» dice que todo número natural mayor o igual que 2 termina su escalada en un número primo.

Definir las funciones

tales que

  • (escaladaPrima n) es la escalada prima de n. Por ejemplo,

  • (longitudEscaladaPrima n) es la longitud de la escalada prima de n. Por ejemplo,

  • (longitudEscaladaPrimaAcotada n k) es el mínimo entre la longitud de la escalada prima de n y k. Por ejemplo,

  • (graficaEscalada n k) dibuja la gráfica de (longitudEscaladaPrimaAcotada x k) para x entre 2 y n. Por ejemplo, (graficaEscalada 120 15) dibuja
    Escalada_hasta_un_primo

Soluciones

Números como diferencias de potencias

El número 45 se puede escribir de tres formas como diferencia de los cuadrados de dos números naturales:

Definir la función

tal que (diferencias x n) es la lista de pares tales que la diferencia de sus potencias n-ésima es x. Por ejemplo,

Soluciones

Ordenación por frecuencia

Definir la función

tal que (ordPorFrecuencia xs) es la lista obtenidas ordenando los elementos de xs por su frecuencia, de los que aparecen más a los que aparecen menos, y los que aparecen el mismo número de veces se ordenan de manera creciente según su valor. Por ejemplo,

Soluciones

Enumeración de los números enteros

Definir la sucesión

tal que sus elementos son los números enteros comenzando en el 0 e intercalando los positivos y los negativos. Por ejemplo,

Comprobar con QuickCheck que el n-ésimo término de la sucesión es
(1-(2*n+1)*(-1)^n)/4.

Nota. En la comprobación usar

Soluciones

Problema del cambio de monedas

El problema del cambio de monedas consiste en dada una lista ms de tipos de monedas (con infinitas monedas de cada tipo) y una cantidad objetivo x, calcular el número de formas de obtener y usando los tipos de monedas de ms. Por ejemplo, con monedas de 1, 5 y 10 céntimos se puede obtener 12 céntimos de 4 formas

Definir las funciones

tales que

  • (numeroCambios ms x) es el número de formas de obtener x usando los tipos de monedas de ms. Por ejemplo,

  • sucCambios es la sucesión cuyo k-ésimo término es el número de cambios de k usando monedas de 1, 2, 5 y 10 céntimos. Por ejemplo,

  • (grafica_cambios n) dibuja la gráfica de los n primeros términos de la sucesión sucCambios. Por ejemplo, (grafica_cambios 50) dibuja
    Problema_del_cambio_de_monedas

Soluciones

El problema 3SUM

El problem 3SUM consiste en dado una lista xs, decidir si xs posee tres elementos cuya suma sea cero. Por ejemplo, en [7,5,-9,5,2] se pueden elegir los elementos 7, -9 y 2 que suman 0.

Definir las funciones

tales que
+ (sols3Sum xs) son las listas de tres elementos de xs cuya suma sea cero. Por ejemplo,

  • (pb3Sum xs) se verifica si xs posee tres elementos cuya suma sea cero. Por ejemplo,

Soluciones

Ordenación según una cadena

Dada una lista xs y una cadena cs de la misma longitud, la ordenación de xs según cs consiste en emparejar los elementos de cs con los de xs (de forma que al menor elemento de cs le corresponde el menor de xs, al segundo de cs el segundo de xs, etc.) y ordenar los elementos de xs en el mismo orden que sus correspondientes elementos de cs. Por ejemplo, si xs es [6,4,2] y cs es «CAB» entonces a ‘A’ le corresponde el 2, a ‘B’ el 4 y a ‘C’ el 6; luego la ordenación es [6,2,4].

Definir la función

tal que (ordenacion xs ys) es la ordenación de la lista xs según la cadena cs. Por ejemplo,

Soluciones

Recorrido por niveles de árboles binarios

Los árboles binarios con valores en las hojas y en los nodos se definen por

Por ejemplo, el árbol

se pueden representar por

Definir la función

tal que (recorrido a) es el recorrido del árbol a por niveles desde la raíz a las hojas y de izquierda a derecha. Por ejemplo,

Soluciones

Posiciones de las mayúsculas

Definir la función

tal que (posicionesMayusculas cs) es la lista de las posiciones de las mayúsculas de la cadena cs. Por ejemplo,

Soluciones

Rotaciones divisibles por 8

Las rotaciones de 928160 son 928160, 281609, 816092, 160928, 609281 y 92816 de las que 3 son divisibles por 8 (928160, 160928 y 92816).

Definir la función

tal que (nRotacionesDivisiblesPor8 x) es el número de rotaciones de x divisibles por 8. Por ejemplo,

Soluciones

Vecino en lista circular

En la lista circular [3,2,5,7,9]

  • el vecino izquierdo de 5 es 2 y su vecino derecho es 7,
  • el vecino izquierdo de 9 es 7 y su vecino derecho es 3,
  • el vecino izquierdo de 3 es 9 y su vecino derecho es 2,
  • el elemento 4 no tiene vecinos (porque no está en la lista).

Para indicar las direcciones se define el tipo de datos

Definir la función

tal que (vecino d xs x) es el vecino de x en la lista de elementos distintos xs según la dirección d. Por ejemplo,

Soluciones

Cadenas opuestas

La opuesta de una cadena de letras es la cadena obtenida cambiando las minúsculas por mayúsculas y las minúsculas por mayúsculas. Por ejemplo, la opuesta de «SeViLLa» es «sEvIllA».

Definir la función

tal que (esOpuesta s1 s2) se verifica si las cadenas de letras s1 y s2 son opuestas. Por ejemplo,

Soluciones

Menor con suma de dígitos dada

Definir la función

tal que (minSumDig n) es el menor número x tal que la suma de los dígitos de x es n. Por ejemplo,

Soluciones

Aplicaciones biyectivas

Definir las funciones

tales que

  • (biyectivas xs ys) es el conjunto de las aplicaciones biyectivas del conjunto xs en el conjunto ys. Por ejemplo,

  • (nBiyectivas xs ys) es el número de aplicaciones biyectivas del conjunto xs en el conjunto ys. Por ejemplo,

Nota: En este ejercicio los conjuntos se representan mediante listas ordenadas de elementos distintos.

Soluciones

Bosque de recorridos del autobús

En la librería Data.Tree se definen los árboles y los bosques como sigue

Se pueden definir árboles. Por ejemplo,

También se pueden definir bosques. Por ejemplo,

Se pueden dibujar los bosques con la función drawForest. Por ejemplo,

Usando la notación de los ejercicios anteriores para las subidas y bajadas en el autobús, definir la función

tal que (bosqueRecorridos n m) es el bosque cuyas ramas son los recorridos correctos en un autobús de capacidad n y usando m paradas. Por ejemplo,

en donde la última rama representa el recorrido [(2,0),(2,2),(2,2)].

Soluciones

Número de viajeros en el autobús

Un autobús inicia su recorrido con 0 viajeros. El número de viajeros que se suben y bajan en cada parada se representa por un par (x,y) donde x es el número de las que suben e y el de las que bajan. Un recorrido del autobús se representa por una lista de pares representando los números de viajeros que suben o bajan en cada parada.

Definir la función

tal que (nViajerosEnBus ps) es el número de viajeros en el autobús tras el recorrido ps. Por ejemplo,

Soluciones

Caminos minimales en un árbol numérico

En la librería Data.Tree se definen los árboles y los bosques como sigue

Se pueden definir árboles. Por ejemplo,

Y se pueden dibujar con la función drawTree. Por ejemplo,

Los mayores divisores de un número x son los divisores u tales que u > 1 y existe un v tal que 1 < v < u y u*v = x. Por ejemplo, los mayores divisores de 24 son 12, 8 y 6.

El árbol de los predecesores y mayores divisores de un número x es el árbol cuya raíz es x y los sucesores de cada nodo y > 1 es el conjunto formado por y-1 junto con los mayores divisores de y. Los nodos con valor 1 no tienen sucesores. Por ejemplo, el árbol de los predecesores y mayores divisores del número 6 es

Definir las siguientes funciones

tales que

  • (mayoresDivisores x) es la lista de los mayores divisores de x. Por ejemplo,

  • (arbol x) es el árbol de los predecesores y mayores divisores del número x. Por ejemplo,

  • (caminos x) es la lista de los caminos en el árbol de los predecesores y mayores divisores del número x. Por ejemplo,

  • (caminosMinimales x) es la lista de los caminos en de menor longitud en el árbol de los predecesores y mayores divisores del número x. Por ejemplo,

Soluciones

Máximo de las rotaciones restringidas

Rotar un número a la iquierda significa pasar su primer dígito al final. Por ejemplo, rotando a la izquierda el 56789 se obtiene 67895.

Las rotaciones restringidas del número 56789 se obtienen como se indica a continución:

  • Se inicia con el propio número: 56789
  • El anterior se rota a la izquierda y se obtiene el 67895.
  • Del anterior se fija el primer dígito y se rota a la iquierda los otros. Se obtiene 68957.
  • Del anterior se fijan los 2 primeros dígito y se rota a la iquierda los otros. Se obtiene 68579.
  • Del anterior se fijan los 3 primeros dígito y se rota a la iquierda los otros. Se obtiene 68597.

El proceso ha terminado ya que conservando los cuatro primeros queda sólo un dígito que al girar es él mismo. Por tanto, la sucesión de las rotaciones restringidas de 56789 es

y su mayor elemento es 68957.

Definir la función

tal que (maxRotaciones n) es el máximo de las rotaciones restringidas del número n. Por ejemplo,

Soluciones

Aplicación de lista de funciones a lista de elementos

Definir la función

tal que (aplicaLista fs xs) es la lista de los valores de las funciones de fs
aplicadas a los correspondientes elementos de xs. Por ejemplo,

Soluciones

Mayúsculas y minúsculas alternadas

Definir la función

tal que (alternadas cs) es el par de cadenas (xs,ys) donde xs es la cadena obtenida escribiendo alternativamente en mayúscula o minúscula las letras de la palabra cs (que se supone que es una cadena de letras minúsculas) e ys se obtiene análogamente pero empezando en minúscula. Por ejemplo,

Soluciones

Conjunto de funciones entre dos conjuntos

Una función f entre dos conjuntos A e B se puede representar mediante una lista de pares de AxB tales que para cada elemento a de A existe un único elemento b de B tal que (a,b) pertenece a f. Por ejemplo,

  • [(1,2),(3,6)] es una función de [1,3] en [2,4,6];
  • [(1,2)] no es una función de [1,3] en [2,4,6], porque no tiene ningún par cuyo primer elemento sea igual a 3;
  • [(1,2),(3,6),(1,4)] no es una función porque hay dos pares distintos cuya primera coordenada es 1.

Definir las funciones

tales que

  • (funciones xs ys) es el conjunto de las funciones del conjunto xs en el conjunto ys. Por ejemplo,

  • (nFunciones xs ys) es el número de funciones del conjunto xs en el conjunto ys. Por ejemplo,

Soluciones