Listas de igual longitud

Definir la función

tal que (mismaLongitud xss) se verifica si todas las listas de la lista de listas xss tienen la misma longitud. Por ejemplo,

Soluciones

Partición por longitudes

Definir la función

tal que (particion xs ns) es la partición de xs donde la longitud de cada parte está determinada por los elementos de ns. Por ejemplo,

Soluciones

Máximos de una lista

Definir la función

tal que (maximos xs) es la lista de los elementos de xs que son mayores que todos sus anteriores. Por ejemplo,

Soluciones

Polinomio cromático de un grafo

El polinomio cromático de un grafo calcula el número de maneras en las cuales puede ser coloreado el grafo usando un número de colores dado, de forma que dos vértices adyacentes no tengan el mismo color.

En el caso del grafo completo de n vértices, su polinomio cromático es

Por ejemplo,

Lo que significa que P(4)(x) es el número de formas de colorear el grafo completo de 4 vértices con x colores. Por tanto,

Definir la función

tal que (polGC n) es el polinomio cromático del grafo completo de n vértices. Por ejemplo,

Comprobar con QuickCheck que si el número de colores (x) coincide con el número de vértices del grafo (n), el número de maneras de colorear el grafo es n!.

Nota 1. Al hacer la comprobación limitar el tamaño de las pruebas como se indica a continuación

Nota 2: Este ejercicio debe realizarse usando únicamente las funciones de la librería de polinomios (I1M.PolOperaciones) que se describe aquí y se encuentra aquí.

Soluciones

Suma de posteriores

Definir la función

tal que (sumaPosteriores xs) es la lista obtenida sustituyendo cada elemento de xs por la suma de los elementos posteriores. Por ejemplo,

Comprobar con QuickCheck que el último elemento de la lista (sumaPosteriores xs) siempre es 0.

Soluciones

Algoritmo de bajada para resolver un sistema triangular inferior

Un sistema de ecuaciones lineales Ax = b es triangular inferior si todos los elementos de la matriz A que están por encima de la diagonal principal son nulos; es decir, es de la forma

El sistema es compatible si, y sólo si, el producto de los elementos de la diagonal principal es distinto de cero. En este caso, la solución se puede calcular mediante el algoritmo de bajada:

Definir la función

tal que (bajada a b) es la solución, mediante el algoritmo de bajada, del sistema compatible triangular superior ax = b. Por ejemplo,

Es decir, la solución del sistema

es x=1.5, y=2 y z=0.

Soluciones

Refinamiento de montículos

Definir la función

tal que (refina m ps) es el montículo formado por los elementos del montículo m que cumplen todos los predicados de la lista ps. Por ejemplo,

Soluciones

Cálculo de aprobados

La notas de un examen se pueden representar mediante un vector en el que los valores son los pares formados por los nombres de los alumnos y sus notas.

Definir la función

tal que (aprobados p) es la lista de los nombres de los alumnos que han aprobado y Nothing si todos están suspensos. Por ejemplo,

Soluciones

Inversiones de un número

Un número tiene una inversión cuando existe un dígito x a la derecha de otro dígito de forma que x es menor que y. Por ejemplo, en el número 1745 hay dos inversiones ya que 4 es menor que 7 y 5 es menor que 7 y están a la derecha de 7.

Definir la función

tal que (nInversiones n) es el número de inversiones de n. Por ejemplo,

Soluciones

Números comenzando con un dígito dado

Definir la función

tal que (comienzanCon xs d) es la lista de los elementos de xs que empiezan por el dígito d. Por ejemplo,

Soluciones

Parte par de un polinomio

La parte par de un polinomio de coeficientes enteros es el polinomio formado por sus monomios cuyos coeficientes son números pares. Por ejemplo, la parte par de 4x^3+x^2-7x+6 es 4x^3+6.

Definir la función

tal que (partePar p) es la parte par de p. Por ejemplo,

Nota: Este ejercicio debe realizarse usando únicamente las funciones de la librería I1M.Pol que se encuentra aquí y se describe aquí.

Soluciones

Aplicación de funciones a nodos y hojas

Representamos los árboles binarios con elementos en las hojas y en los nodos mediante el tipo de dato

Definir la función

tal que (aplica f g a) devuelve el árbol obtenido al aplicar la función f a las hojas del árbol a y la función g a los nodos interiores. Por ejemplo,

Soluciones

Múltiplos especiales

Dado dos números n y m, decimos que m es un múltiplo especial de n si m es un múltiplo de n y m no tiene ningún factor primo que sea congruente con 1 módulo 3.

Definir la función

tal que (multiplosEspecialesCota n k) es la lista ordenada de todos los múltiplos especiales de n que son menores o iguales que k. Por ejemplo,

Soluciones

Mínimo y máximo de un montículo

Definir la función

tal que (minMax m) es justamente el par formado por el menor y el mayor elemento de m, si el montículo m es no vacío. Por ejemplo,

Nota: Este ejercicio debe realizarse usando únicamente las funciones de la librería de montículo (I1M.Monticulo) que se describe aquí y se encuentra aquí.

Soluciones

Números cuyas cifras coinciden con las de sus factores primos

Un número n es especial si al unir las cifras de sus factores primos, se obtienen exactamente las cifras de n, aunque puede ser en otro orden. Por ejemplo, 1255 es especial, pues los factores primos de 1255 son 5 y 251.

Definir la función

tal que (esEspecial n) se verifica si un número n es especial. Por ejemplo,

Comprobar con QuickCheck que todo número primo es especial.

Calcular los 5 primeros números especiales que no son primos.

Soluciones

Rotaciones de un número

Definir la función

(rotacionesNumero n) es la lista de las rotaciones obtenidas desplazando el primer dígito de n al final. Por ejemplo,

Soluciones

Agrupamiento según valores

Definir la función

tal que (agrupa f xs) es el diccionario obtenido agrupando los elementos de xs según sus valores mediante la función f. Por ejemplo,

Soluciones

Producto de un número por una lista de números

El producto de un número natural x por una lista de números naturales ys es el número obtenido concatenando los productos de x por cada uno de los elementos de ys. Por ejemplo, el producto de 2 por [3,2,5] es 26410.

Definir la función

tal que (producto x ys) es el producto de x por ys. Por ejemplo,

Soluciones

Polinomios pares

Un polinomio de coeficientes enteros se dirá par si todos sus coeficientes son números pares. Por ejemplo, el polinomio 2x³ – 4x² + 8 es par y el x² + 2x + 10 no lo es.

Definir el predicado

tal que (parPol p) se verifica si p es un polinomio par. Por ejemplo,

Comprobar con QuickCheck que la suma de un polinomio con él mismo es un polinomio par.

Nota: Este ejercicio debe realizarse usando la librería I1M.Pol que se encuentra aquí y se describe aquí.

Soluciones

Ampliación de una matriz sumando sus filas

Representamos las matrices mediante el tipo de dato

Por ejemplo,

representa la matriz

Definir la función

tal que (ampliada p) es la matriz obtenida al añadir una nueva fila a p cuyo elemento i-ésimo es la suma de la columna i-ésima de p. Por ejemplo,

En Haskell,

Soluciones

Ramas a las que pertenece un elemento

Representamos los árboles binarios con elementos en las hojas y en los nodos mediante el tipo de dato

Por ejemplo,

Definir la función

tal que (ramasCon a x) es la lista de las ramas del árbol a en las que aparece el elemento x. Por ejemplo,

Soluciones

Pares de enteros con sólo un factor primo común

Dos enteros positivos a y b se dirán relacionados si poseen, exactamente, un factor primo en común. Por ejemplo, 12 y 20 están relacionados, pero 6 y 30 no lo están.

Definir la lista infinita

tal que paresRel enumera todos los pares (a,b), con 1 ≤ a < b, tal que a y b están relacionados. Por ejemplo,

¿Qué lugar ocupa el par (51,111) en la lista infinita paresRel?

Soluciones

Cociente entero de polinomios

El cociente entero de un polinomio P(x) por un monomio axⁿ es el polinomio que se obtiene a partir de los términos de P(x) con un grado mayor o igual que n, realizando la división entera entre sus coeficientes y el coeficiente del monomio divisor y restando el valor de n al de sus grados. Por ejemplo,

  • El cociente entero de 4x⁴ + 6x³ + 7x² + 5x + 2 por el monomio 3x² se obtiene a partir de los términos 4x⁴ + 6x³ + 7x² realizando la división entera entre sus coeficientes y el número 3 y restando 2 a sus grados. De esta forma se obtiene x² + 2x + 2
  • El cociente entero de 6x⁵ + 2x⁴ + 8x³ + 5x² + 8x + 4 por el monomio 4x³ se obtiene a partir de los términos 6x⁵ + 2x⁴ + 8x³ realizando la división entera entre sus coeficientes y el número 4 y restando 3 a sus grados. De esta forma se obtiene x² + 2

Definir la función

tal que (cocienteEntero p a n) es el cociente entero del polinomio p por el monomio de grado n y coeficiente a. Por ejemplo,

Nota: Este ejercicio debe realizarse usando únicamente las funciones de la librería I1M.Pol que se encuentra aquí y se describe aquí.

Soluciones

Sucesión de números parientes

Se dice que dos números naturales son parientes sitienen exactamente un factor primo en común, independientemente de su multiplicidad. Por ejemplo,

  • Los números 12 (2²·3) y 40 (2³·5) son parientes, pues tienen al 2 como único factor primo en común.
  • Los números 49 (7²) y 63 (3²·7) son parientes, pues tienen al 7 como único factor primo en común.
  • Los números 12 (2²·3) y 30 (2·3·5) no son parientes, pues tienen dos factores primos en común.
  • Los números 49 (7²) y 25 (5²) no son parientes, pues no tienen factores primos en común.

Se dice que una lista de números naturales es una secuencia de parientes si cada par de números consecutivos son parientes. Por ejemplo,

  • La lista [12,40,35,28] es una secuencia de parientes.
  • La lista [12,30,21,49] no es una secuencia de parientes.

Definir la función

tal que (secuenciaParientes xs) se verifica si xs es una secuencia de parientes. Por ejemplo,

Soluciones

Actualización de una lista

Definir la función

tal que (actualiza xs ps) es la lista obtenida sustituyendo en xs los elementos cuyos índices son las primeras componentes de ps por las segundas. Por ejemplo,

Soluciones

Orden de divisibilidad

El orden de divisibilidad de un número x es el mayor n tal que para todo i menor o igual que n, los i primeros dígitos de n es divisible por i. Por ejemplo, el orden de divisibilidad de 74156 es 3 porque

Definir la función

tal que (ordenDeDivisibilidad x) es el orden de divisibilidad de x. Por ejemplo,

Soluciones

Números con la misma cantidad de anteriores con 1 que sin 1

Una propiedad del número 24 es que entre los números menores o iguales que 24 hay la misma cantidad de números con el dígito 1 que sin el 1; en efecto, los que tienen 1 son

y los que no lo tienen son

Diremos que un número es especial si cumple dicha propiedad.

Definir la sucesión

cuyos elementos son los números especiales. Por ejemplo,

Soluciones

Productos simultáneos de dos y tres números consecutivos

Definir la función

tal que (productos n x) es las listas de n elementos consecutivos cuyo producto es x. Por ejemplo,

Comprobar con QuickCheck que si n > 0 y x > 0, entonces

Usando productos, definir la función

cuyos elementos son los números naturales (no nulos) que pueden expresarse simultáneamente como producto de dos y tres números consecutivos. Por ejemplo,

Nota. Según demostró Mordell en 1962, productosDe2y3consecutivos sólo tiene dos elementos.

Soluciones

Cálculo del número de islas rectangulares en una matriz

En este problema se consideran matrices cuyos elementos son 0 y 1. Los valores 1 aparecen en forma de islas rectangulares separadas por 0 de forma que como máximo las islas son diagonalmente adyacentes. Por ejemplo,

Definir la función

tal que (numeroDeIslas p) es el número de islas de la matriz p. Por ejemplo,

Soluciones

Mayor diferencia progresiva

La diferencia progresiva entre dos elementos de una lista es la resta entre el que ocupa la mayor posición y la menor. Por ejemplo, en la lista [1,5,8,2,9] la diferencia entre los elementos 5 y 8 es 3 y entre 5 y 2 es -3.

Definir la función

tal que (mayorDiferencia xs) es la mayor diferencia progresiva entre los elementos de xs. Por ejemplo,

Soluciones