El problema de las N torres

El problema de las N torres consiste en colocar N torres en un tablero con N filas y N columnas de forma que no haya dos torres en la misma fila ni en la misma columna.

Cada solución del problema de puede representar mediante una matriz con ceros y unos donde los unos representan las posiciones ocupadas por las torres y los ceros las posiciones libres. Por ejemplo,

representa una solución del problema de las 3 torres.

Definir las funciones

tales que
+ (torres n) es la lista de las soluciones del problema de las n torres. Por ejemplo,

  • (nTorres n) es el número de soluciones del problema de las n torres. Por ejemplo,

Soluciones

[schedule expon=’2018-06-12′ expat=»06:00″]

  • Las soluciones se pueden escribir en los comentarios hasta el 17 de abril.
  • El código se debe escribir entre una línea con <pre lang=»haskell»> y otra con </pre>

[/schedule]

[schedule on=’2018-06-12′ at=»06:00″]

[/schedule]

Valores de polinomios y de expresiones

Las expresiones aritméticas construidas con una variables, los números enteros y las operaciones de sumar y multiplicar se pueden representar mediante el tipo de datos Exp definido por

Por ejemplo, la expresión 3+5x^2 se puede representar por

Por su parte, los polinomios se pueden representar por la lista de sus
coeficientes. Por ejemplo, el polinomio 3+5x^2 se puede representar por [3,0,5].

Definir las funciones

tales que

  • (valorE e n) es el valor de la expresión e cuando se sustituye su variable por n. Por ejemplo,

  • (expresion p) es una expresión aritmética equivalente al polinomio p. Por ejemplo,

  • (valorP p n) es el valor del polinomio p cuando se sustituye su variable por n. Por ejemplo,

Comprobar con QuickCheck que, para todo polinomio p y todo entero n,

Soluciones

Ancestro común más bajo

El tipo de los árboles binarios se define por

Por ejemplo, el árbol

se define por

Un árbol ordenado es un árbol binario tal que para cada nodo, los elementos de su subárbol izquierdo son menores y los de su subárbol derecho son mayores. El árbol anterior es un árbol ordenado.

Los ancestros de un nodo x son los nodos y tales que x está en alguna de las ramas de x. Por ejemplo, en el árbol anterior los ancestros de 9 son 5 y 7.

El ancestro común más bajo de dos elementos x e y de un árbol a es el ancestro de x e y de menor profundidad. Por ejemplo, en el árbol anterior el ancestro común más bajo de 6 y 9 es 7.

Definir la función

tal que (ancestroComunMasBajo a x y) es el ancestro de menor profundidad de los nodos x e y en el árbol ordenado a, donde x e y son dos elementos distintos del árbol a. Por ejemplo,

Soluciones

Subexpresiones aritméticas

Las expresiones aritméticas pueden representarse usando el siguiente tipo de datos

Por ejemplo, la expresión 2*(3+7) se representa por

Definir la función

tal que (subexpresiones e) es el conjunto de las subexpresiones de e. Por ejemplo,

Soluciones

La regla de los signos de Descartes

Los polinomios pueden representarse mediante listas. Por ejemplo, el polinomio x^5+3x^4-5x^2+x-7 se representa por [1,3,0,-5,1,-7]. En dicha lista, obviando el cero, se producen tres cambios de signo: del 3 al -5, del -5 al 1 y del 1 al -7. Llamando C(p) al número de cambios de signo en la lista de coeficientes del polinomio p(x), tendríamos entonces que en este caso C(p)=3.

La regla de los signos de Descartes dice que el número de raíces reales positivas de una ecuación polinómica con coeficientes reales igualada a cero es, como mucho, igual al número de cambios de signo que se produzcan entre sus coeficientes (obviando los ceros). Por ejemplo, en el caso anterior la ecuación tendría como mucho tres soluciones reales positivas, ya que C(p)=3.

Además, si la cota C(p) no se alcanza, entonces el número de raíces positivas de la ecuación difiere de ella un múltiplo de dos. En el ejemplo anterior esto significa que la ecuación puede tener tres raíces positivas o tener solamente una, pero no podría ocurrir que tuviera dos o que no tuviera ninguna.

Definir las funciones

tales que

  • (cambios xs) es la lista de los pares de elementos de xs con signos distintos, obviando los ceros. Por ejemplo,

  • (nRaicesPositivas p) es la lista de los posibles números de raíces positivas del polinomio p (representado mediante una lista) según la regla de los signos de Descartes. Por ejemplo,

que significa que la ecuación x^5+3x^4-5x^2+x-7=0 puede tener 3 ó 1 raíz positiva.

Soluciones

Números taxicab

Los números taxicab, taxi-cab o números de Hardy-Ramanujan son aquellos números naturales que pueden expresarse como suma de dos cubos de más de una forma.

Alternativamente, se define al n-ésimo número taxicab como el menor número que es suma de dos cubos de n formas.

Definir las siguientes sucesiones

tales que taxicab es la sucesión de estos números según la primera definición y taxicab2 según la segunda. Por ejemplo,

Nota 1. La sucesiones taxicab y taxicab2 se corresponden con las sucesiones A001235 y A011541 de la OEIS.

Nota 2: Este ejercicio ha sido propuesto por Ángel Ruiz Campos.

Soluciones

Números de Church

Los números naturales pueden definirse de forma alternativa empleando los números de Church. Podemos representar un número natural n como una función que toma una función f como parámetro y devuelve n veces f.

Definimos por tanto los números naturales como

De esta forma, para representar el número uno, repetir una vez una función es lo mismo que solamente aplicarla.

De manera similar, dos debe aplicar f dos veces a su argumento.

Definir cero equivale por tanto a devolver el argumento sin modificar.

Definir las funciones

tales que

  • cero, uno y dos son definiciones alternativas a las ya dadas y tres es el número natural 3 con esta representación.
  • (nat2Int n) es el número entero correspondiente al número natuaral n. Por ejemplo,

  • (succ n) es el sucesor del número n. Por ejemplo,

  • (suma n m) es la suma de n y m. Por ejemplo,

  • (mult n m) es el producto de n y m. Por ejemplo,

  • (exp n m) es la potencia m-ésima de n. Por ejemplo,

Comprobar con QuickCheck las siguientes propiedades. Para ello importar la librería Test.QuickCheck.Function y seguir el siguiente ejemplo:

Nota 1: Añadir al inicio del archivo del ejercicio los pragmas

Nota 2: Este ejercicio ha sido propuesto por Ángel Ruiz Campos.

Soluciones

Caminos reducidos

Un camino es una sucesión de pasos en una de las cuatros direcciones Norte, Sur, Este, Oeste. Ir en una dirección y a continuación en la opuesta es un esfuerzo que se puede reducir, Por ejemplo, el camino [Norte,Sur,Este,Sur] se puede reducir a [Este,Sur].

Un camino se dice que es reducido si no tiene dos pasos consecutivos en direcciones opuesta. Por ejemplo, [Este,Sur] es reducido y [Norte,Sur,Este,Sur] no lo es.

En Haskell, las direcciones y los caminos se pueden definir por

Definir la función

tal que (reducido ds) es el camino reducido equivalente al camino ds. Por ejemplo,

Nótese que en el penúltimo ejemplo las reducciones son

Soluciones

Descomposiciones de N como sumas de 1, 3 ó 4.

El número 5 se puede descomponer en 6 formas distintas como sumas cuyos sumandos sean 1, 3 ó 4:

Definir las funciones

tales que

  • (descomposiciones n) es la lista de las descomposiciones de n como sumas cuyos sumandos sean 1, 3 ó 4. Por ejemplo,

  • (nDescomposiciones n) es el número de descomposiciones de n como sumas cuyos sumandos sean 1, 3 ó 4. Por ejemplo,

Nota: Se puede usar programación dinámica.

Soluciones

Problema de las 3 jarras

En el problema de las tres jarras (A,B,C) se dispone de tres jarras de capacidades A, B y C litros con A > B > C y A par. Inicialmente la jarra mayor está llena y las otras dos vacías. Queremos, trasvasando adecuadamente el líquido entre las jarras, repartir por igual el contenido inicial entre las dos jarras mayores. Por ejemplo, para el problema (8,5,3) el contenido inicial es (8,0,0) y el final es (4,4,0).

Definir las funciones

tales que

  • (solucionesTresJarras p) es la lista de soluciones del problema de las tres jarras p. Por ejemplo,

  • (tresJarras p) es una solución del problema de las tres jarras p con el mínimo mínimo número de trasvase, si p tiene solución y Nothing, en caso contrario. Por ejemplo,

Soluciones

Representaciones de grafos

Los grafos no dirigidos puede representarse mediante matrices de adyacencia y también mediante listas de adyacencia. Por ejemplo, el grafo

se puede representar por la matriz de adyacencia

donde el elemento (i,j) es 1 si hay una arista entre los vértices i y j y es 0 si no la hay. También se puede representar por la lista de adyacencia

donde las primeras componentes son los vértices y las segundas la lista de los vértices conectados.

Definir las funciones

tales que

  • (matrizAlista a) es la lista de adyacencia correspondiente a la matriz de adyacencia a. Por ejemplo, definiendo la matriz anterior por

se tiene que

  • (listaAmatriz ps) es la matriz de adyacencia correspondiente a la lista de adyacencia ps. Por ejemplo,

Soluciones

Polinomios de Fibonacci

La sucesión de polinomios de Fibonacci se define por

Los primeros términos de la sucesión son

Definir la lista

tal que sus elementos son los polinomios de Fibonacci. Por ejemplo,

Comprobar con QuickCheck que el valor del n-ésimo término de sucPolFib para x=1 es el n-ésimo término de la sucesión de Fibonacci 0, 1, 1, 2, 3, 5, 8, …

Nota. Limitar la búsqueda a ejemplos pequeños usando

Soluciones

Caminos en un grafo

Definir las funciones

tales que

  • (grafo as) es el grafo no dirigido definido cuyas aristas son as. Por ejemplo,

  • (caminos g a b) es la lista los caminos en el grafo g desde a hasta b sin pasar dos veces por el mismo nodo. Por ejemplo,

Soluciones

Sustitución de pares de elementos consecutivos iguales

Dada una lista xs se reemplaza el primer par de elementos consecutivos iguales x por x+1 y se repite el proceso con las listas obtenidas hasta que no haya ningún par de elementos consecutivos iguales. Por ejemplo, para [5,2,1,1,2,2] se tiene el siguiente proceso

Definir la función

tal que (sustitucion xs) es la lista obtenida aplicándole a xs el proceso anterior. Por ejemplo,

Soluciones

Problema del dominó

Las fichas del dominó se pueden representar por pares de números enteros. El problema del dominó consiste en colocar todas las fichas de una lista dada de forma que el segundo número de cada ficha coincida con el primero de la siguiente.

Definir la función

tal que (domino fs) es la lista de las soluciones del problema del dominó correspondiente a las fichas fs. Por ejemplo,

Soluciones

El problema de las celebridades

La celebridad de una reunión es una persona al que todos conocen pero que no conoce a nadie. Por ejemplo, si en la reunión hay tres personas tales que la 1 conoce a la 3 y la 2 conoce a la 1 y a la 3, entonces la celebridad de la reunión es la 3.

La relación de conocimiento se puede representar mediante una lista de pares (x,y) indicando que x conoce a y. Por ejemplo, la reunión anterior se puede representar por [(1,3),(2,1),(2,3)].

Definir la función

tal que (celebridad r) es el justo la celebridad de r, si en r hay una celebridad y Nothing, en caso contrario. Por ejemplo,

Soluciones

Grafo de divisibilidad

El grafo de divisibilidad de orden n es el grafo cuyos nodos son los números naturales entre 1 y n, cuyas aristas son los pares (x,y) tales que x divide a y o y divide a x. El coste de cada arista es el cociente entre su mayor y menor elemento.

Definir las siguientes funciones:

tales que

  • (grafoDivisibilidad n) es el grafo de divisibilidad de orden n. Por ejemplo,

  • (coste n) es el coste del árbol de expansión mínimo del grafo de divisibilidad de orden n. Por ejemplo,

Soluciones

Sucesión de Recamán

La sucesión de Recamán está definida como sigue:

Definir las funciones

tales que

  • sucRecaman es la lista de los términos de la sucesión de Recamám. Por ejemplo,

  • (invRecaman n) es la primera posición de n en la sucesión de Recamán. Por ejemplo,

  • (graficaSucRecaman n) dibuja los n primeros términos de la sucesión de Recamán. Por ejemplo, (graficaSucRecaman 300) dibuja
    Sucesion_de_Recaman_1
  • (graficaInvRecaman n) dibuja los valores de (invRecaman k) para k entre 0 y n. Por ejemplo, (graficaInvRecaman 17) dibuja
    Sucesion_de_Recaman_2
    y (graficaInvRecaman 100) dibuja
    Sucesion_de_Recaman_3

Soluciones

Problema de las jarras

En el problema de las jarras (A,B,C) se tienen dos jarras sin marcas de medición, una de A litros de capacidad y otra de B. También se dispone de una bomba que permite llenar las jarras de agua.

El problema de las jarras (A,B,C) consiste en determinar cómo se puede lograr tener exactamente C litros de agua en alguna de las dos jarras.

Definir la función

tal (jarras (a,b,c)) es una solución del problema de las jarras (a,b,c) con el mínimo número de movimientos, si el problema tiene solución y Nothing, en caso contrario. Por ejemplo,

La interpretación de la solución anterior es

Otros ejemplos:

Soluciones

Mayor número de atracciones visitables

En el siguiente gráfico se representa en una cuadrícula el plano de Manhattan. Cada línea es una opción a seguir; el número representa las atracciones que se pueden visitar si se elige esa opción.

El turista entra por el extremo superior izquierda y sale por el extremo inferior derecha. Sólo puede moverse en las direcciones Sur y Este (es decir, hacia abajo o hacia la derecha).

Representamos el mapa mediante una matriz p tal que p(i,j) = (a,b), donde a = nº de atracciones si se va hacia el sur y b = nº de atracciones si se va al este. Además, ponemos un 0 en el valor del número de atracciones por un camino que no se puede elegir. De esta forma, el mapa anterior se representa por la matriz siguiente:

En este caso, si se hace el recorrido

el número de atracciones es

cuya suma es 34.

Definir la función

tal que (mayorNumeroV p) es el máximo número de atracciones que se pueden visitar en el plano representado por la matriz p. Por ejemplo, si se define la matriz anterior por

entonces

Para los siguientes ejemplos se define un generador de mapas

Entonces,

Soluciones

Números construidos con los dígitos de un conjunto dado

Definir las siguientes funciones

tales que

  • (numerosCon ds) es la lista de los números que se pueden construir con los dígitos de ds (cuyos elementos son distintos elementos del 1 al 9) . Por ejemplo,

  • (numeroDeDigitos ds k) es el número de dígitos que tiene el k-ésimo elemento (empezando a contar en 0) de la sucesión (numerosCon ds). Por ejemplo,

Soluciones

Número de triangulaciones de un polígono

Una triangulación de un polígono es una división del área en un conjunto de triángulos, de forma que la unión de todos ellos es igual al polígono original, y cualquier par de triángulos es disjunto o comparte únicamente un vértice o un lado. En el caso de polígonos convexos, la cantidad de triangulaciones posibles depende únicamente del número de vértices del polígono.

Si llamamos T(n) al número de triangulaciones de un polígono de n vértices, se verifica la siguiente relación de recurrencia:

Definir la función

tal que (numeroTriangulaciones n) es el número de triangulaciones de un polígono convexo de n vértices. Por ejemplo,

Soluciones

Sucesiones suaves

Una sucesión es suave si valor absoluto de la diferencia de sus términos consecutivos es 1.

Definir la función

tal que (suaves n) es la lista de las sucesiones suaves de longitud n cuyo último término es 0. Por ejemplo,

Soluciones

Máximos de expresiones aritméticas

Las expresiones aritméticas se pueden definir usando el siguiente tipo de datos

Por ejemplo, la expresión

se puede definir por

Definir la función

tal que (maximo e xs) es el par formado por el máximo valor de la expresión e para los puntos de xs y en qué puntos alcanza el máximo. Por ejemplo,

Soluciones

Clausura respecto de una operación binaria

Se dice que una operador @ es interno en un conjunto A si al @ sobre elementos de A se obtiene como resultado otro elemento de A. Por ejemplo, la suma es un operador interno en el conjunto de los números naturales pares.

La clausura de un conjunto A con respecto a un operador @ es el menor conjunto B tal que A está contenido en B y el operador @ es interno en el conjunto B. Por ejemplo, la clausura del conjunto {2} con respecto a la suma es el conjunto de los números pares positivos:

Definir la función

tal que (clausuraOperador op xs) es la clausura del conjunto xs con respecto a la operación op. Por ejemplo,

Soluciones

Polinomio digital

Definir la función

tal que (polinomioDigital n) es el polinomio cuyos coeficientes son los dígitos de n. Por ejemplo,

Nota: Este ejercicio debe realizarse usando únicamente las funciones de la librería I1M.Pol que se encuentra aquí y se describe aquí.

Soluciones

Las sucesiones de Loomis

La sucesión de Loomis generada por un número entero positivo x es la sucesión cuyos términos se definen por

  • f(0) es x
  • f(n) es la suma de f(n-1) y el producto de los dígitos no nulos de f(n-1)

Los primeros términos de las primeras sucesiones de Loomis son

  • Generada por 1: 1, 2, 4, 8, 16, 22, 26, 38, 62, 74, 102, 104, 108, 116, 122, …
  • Generada por 2: 2, 4, 8, 16, 22, 26, 38, 62, 74, 102, 104, 108, 116, 122, 126, …
  • Generada por 3: 3, 6, 12, 14, 18, 26, 38, 62, 74, 102, 104, 108, 116, 122, 126, …
  • Generada por 4: 4, 8, 16, 22, 26, 38, 62, 74, 102, 104, 108, 116, 122, 126, 138, …
  • Generada por 5: 5, 10, 11, 12, 14, 18, 26, 38, 62, 74, 102, 104, 108, 116, 122, …

Se observa que a partir de un término todas coinciden con la generada por 1. Dicho término se llama el punto de convergencia. Por ejemplo,

  • la generada por 2 converge a 2
  • la generada por 3 converge a 26
  • la generada por 4 converge a 4
  • la generada por 5 converge a 26

Definir las siguientes funciones

tales que

  • (sucLoomis x) es la sucesión de Loomis generada por x. Por ejemplo,

  • (convergencia x) es el término de convergencia de la sucesioń de Loomis generada por x xon la geerada por 1. Por ejemplo,

  • (graficaConvergencia xs) dibuja la gráfica de los términos de convergencia de las sucesiones de Loomis generadas por los elementos de xs. Por ejemplo, (graficaConvergencia ([1..50]) dibuja
    Las_sucesiones_de_Loomis_1
    y graficaConvergencia ([1..148] \ [63,81,89,137]) dibuja
    Las_sucesiones_de_Loomis_2

Soluciones

Operaciones con series de potencias

Una serie de potencias es una serie de la forma

Las series de potencias se pueden representar mediante listas infinitas. Por ejemplo, la serie de la función exponencial es

y se puede representar por [1, 1, 1/2, 1/6, 1/24, 1/120, …]

Las operaciones con series se pueden ver como una generalización de las de los polinomios.

En lo que sigue, usaremos el tipo (Serie a) para representar las series de potencias con coeficientes en a y su definición es

Definir las siguientes funciones

tales que

  • (opuesta xs) es la opuesta de la serie xs. Por ejemplo,

  • (suma xs ys) es la suma de las series xs e ys. Por ejemplo,

  • (resta xs ys) es la resta de las series xs es ys. Por ejemplo,

  • (producto xs ys) es el producto de las series xs e ys. Por ejemplo,

  • (cociente xs ys) es el cociente de las series xs e ys. Por ejemplo,

  • (derivada xs) es la derivada de la serie xs. Por ejemplo,

  • (integral xs) es la integral de la serie xs. Por ejemplo,

  • expx es la serie de la función exponencial. Por ejemplo,

Soluciones

Diccionario inverso

El inverso de un diccionario d es el diccionario que a cada valor x le asigna la lista de claves cuyo valor en d es x. Por ejemplo, el inverso de

es

Definir la función

tal que (inverso d) es el inverso del diccionario d. Por ejemplo,

Soluciones

Subconjuntos con suma dada

Sea S un conjunto finito de números enteros positivos y n un número natural. El problema consiste en calcular los subconjuntos de S cuya suma es n.

Definir la función

tal que (subconjuntosSuma xs n) es la lista de los subconjuntos de xs cuya suma es n. Por ejemplo,

Soluciones