Período de una lista

El período de una lista xs es la lista más corta ys tal que xs se puede obtener concatenando varias veces la lista ys. Por ejemplo, el período «abababab» es «ab» ya que «abababab» se obtiene repitiendo tres veces la lista «ab».

Definir la función

tal que (periodo xs) es el período de xs. Por ejemplo,

Soluciones

Mezcla de infinitas listas infinitas

Definir la función

tal que (mezclaTodas xss) es la mezcla ordenada de xss, donde tanto xss como sus elementos son listas infinitas ordenadas. Por ejemplo,

Soluciones

Expresiones aritmética normalizadas

El siguiente tipo de dato representa expresiones construidas con variables, sumas y productos

Por ejemplo, x.(y+z) se representa por (P (V «x») (S (V «y») (V «z»)))

Una expresión es un término si es un producto de variables. Por ejemplo, x.(y.z) es un término pero x+(y.z) ni x.(y+z) lo son.

Una expresión está en forma normal si es una suma de términos. Por ejemplo, x.(y,z) y x+(y.z) está en forma normal; pero x.(y+z) y (x+y).(x+z) no lo están.

Definir las funciones

tales que

  • (esTermino a) se verifica si a es un término. Por ejemplo,

  • (esNormal a) se verifica si a está en forma normal. Por ejemplo,

Soluciones

Operaciones con series de potencias

Una serie de potencias es una serie de la forma

Las series de potencias se pueden representar mediante listas
infinitas. Por ejemplo, la serie de la función exponencial es

y se puede representar por [1, 1, 1/2, 1/6, 1/24, 1/120, …]

Las operaciones con series se pueden ver como una generalización de las de los polinomios.

En lo que sigue, usaremos el tipo (Serie a) para representar las series de potencias con coeficientes en a y su definición es

Definir las siguientes funciones

tales que

  • (opuesta xs) es la opuesta de la serie xs. Por ejemplo,

  • (suma xs ys) es la suma de las series xs e ys. Por ejemplo,

  • (resta xs ys) es la resta de las series xs es ys. Por ejemplo,

  • (producto xs ys) es el producto de las series xs e ys. Por ejemplo,

  • (cociente xs ys) es el cociente de las series xs e ys. Por ejemplo,

  • (derivada xs) es la derivada de la serie xs. Por ejemplo,

  • (integral xs) es la integral de la serie xs. Por ejemplo,

  • expx es la serie de la función exponencial. Por ejemplo,

Soluciones

Mínimo número de cambios para igualar una lista

Definir la función

tal que (nMinimoCambios xs) es el menor número de elementos de xs que hay que cambiar para que todos sean iguales. Por ejemplo,

En el primer ejemplo, los elementos que hay que cambiar son 5, 7, 9 y 6.

Soluciones

Productos simultáneos de dos y tres números consecutivos

Definir la función

tal que (productos n x) es las listas de n elementos consecutivos cuyo producto es x. Por ejemplo,

Comprobar con QuickCheck que si n > 0 y x > 0, entonces

Usando productos, definir la función

cuyos elementos son los números naturales (no nulos) que pueden expresarse simultáneamente como producto de dos y tres números consecutivos. Por ejemplo,

Nota. Según demostró Mordell en 1962, productosDe2y3consecutivos sólo tiene dos elementos.

Soluciones

Conflictos de horarios

Los horarios de los cursos se pueden representar mediante matrices donde las filas indican los curso, las columnas las horas de clase y el valor correspondiente al curso i y la hora j es verdadero indica que i tiene clase a la hora j.

En Haskell, podemos usar la matrices de la librería Data.Matrix y definir el tipo de los horarios por

Un ejemplo de horario es

en el que el 1º curso tiene clase a la 1ª y 2ª hora, el 2º a la 2ª y a la 3ª y el 3º a la 3ª y a la 4ª.

Definir la función

tal que (cursosConflictivos h is) se verifica para si los cursos de la lista is hay alguna hora en la que más de uno tiene clase a dicha hora. Por ejemplo,

Soluciones

Mínima diferencia entre elementos de una lista

Definir la función

tal que (minimaDiferencia xs) es el menor valor absoluto de las diferencias entre todos los pares de elementos de xs (que se supone que tiene al menos 2 elementos). Por ejemplo,

En el primer ejemplo la menor diferencia es 1 y se da entre los elementos 19 y 18; en el 2ª es 4 entre los elementos 5 y 9 y en la 3ª es 0 porque el elemento 5 está repetido.

Soluciones

Números como sumas de primos consecutivos

En el artículo Integers as a sum of consecutive primes in 2,3,4,.. ways se presentan números que se pueden escribir como sumas de primos consecutivos de varias formas. Por ejemplo, el 41 se puede escribir de dos formas distintas

el 240 se puede escribir de tres formas

y el 311 se puede escribir de 4 formas

Definir la función

tal que (sumas x) es la lista de las formas de escribir x como suma
de dos o más números primos consecutivos. Por ejemplo,

Soluciones

Caminos reducidos

Un camino es una sucesión de pasos en una de las cuatros direcciones Norte, Sur, Este, Oeste. Ir en una dirección y a continuación en la opuesta es un esfuerzo que se puede reducir, Por ejemplo, el camino [Norte,Sur,Este,Sur] se puede reducir a [Este,Sur].

Un camino se dice que es reducido si no tiene dos pasos consecutivos en direcciones opuesta. Por ejemplo, [Este,Sur] es reducido y [Norte,Sur,Este,Sur] no lo es.

En Haskell, las direcciones y los caminos se pueden definir por

Definir la función

tal que (reducido ds) es el camino reducido equivalente al camino ds. Por ejemplo,

Nótese que en el penúltimo ejemplo las reducciones son

Soluciones