Mayor producto de n dígitos consecutivos de un número

Definir la función

tal que (mayorProducto n x) es el mayor producto de n dígitos consecutivos del número x (suponiendo que x tiene al menos n dígitos). Por ejemplo,

Nota: Este ejercicio está basado en el problema 8 del Proyecto Euler

Soluciones

Pensamiento

«El control de la complejidad es la esencia de la programación.» ~ B.W. Kernigan

Menor divisible por todos

Definir la función

tal que (menorDivisible a b) es el menor número divisible por todos los números desde a hasta b, ambos inclusive. Por ejemplo,

Nota: Este ejercicio está basado en el problema 5 del Proyecto Euler

Soluciones

Pensamiento

Será el peor de los malos
bribón que olvide
su vocación de diablo.

Antonio Machado

Menor número triangular con más de n divisores

La sucesión de los números triangulares se obtiene sumando los números naturales.

Así, el 7º número triangular es

Los primeros 10 números triangulares son

Los divisores de los primeros 7 números triangulares son:

Como se puede observar, 28 es el menor número triangular con más de 5 divisores.

Definir la función

tal que (menorTriangularConAlMenosNDivisores n) es el menor número triangular que tiene al menos n divisores. Por ejemplo,

Nota: Este ejercicio está basado en el problema 12 del Proyecto Euler

Soluciones

Pensamiento

«La Matemática es una ciencia experimental y la computación es el experimento.» ~ Rivin

Mayor divisor primo

Los divisores primos de 13195 son 5, 7, 13 y 29. Por tanto, el mayor divisor primo de 13195 es 29.

Definir la función

tal que (mayorDivisorPrimo n) es el mayor divisor primo de n. Por ejemplo,

Nota: Este ejercicio está basado en el problema 3 del Proyecto Euler

Soluciones

Pensamiento

«Un programa de ordenador es una demostración.» ~ Igor Rivin

Números triangulares

La sucesión de los números triangulares se obtiene sumando los números naturales.

Así, los 5 primeros números triangulares son

Definir la función

tal que triangulares es la lista de los números triangulares. Por ejemplo,

Comprobar con QuickCheck que entre dos números triangulares consecutivos siempre hay un número primo.

Soluciones

Pensamiento

Autores, la escena acaba
con un dogma de teatro:
En el principio era la máscara.

Antonio Machado

Factorización prima

La descomposición prima de 600 es

Definir la función

tal que (factorizacion x) ses la lista de las bases y exponentes de la descomposición prima de x. Por ejemplo,

Soluciones

Pensamiento

¿Todo para los demás?
Mancebo, llena tu jarro,
que ya te lo beberán.

Antonio Machado

Mayor prefijo común

Definir la función

tal que (mayorPrefijoComun xs ys) calcula el mayor prefijo común a xs e ys. Por ejemplo,

Soluciones

Pensamiento

Los ojos por que suspiras,
sábelo bien,
los ojos en que te miras
son ojos porque te ven.

Antonio Machado

Listas decrecientes

Definir la función

tal que (listasDecrecientesDesde n) es la lista de las sucesiones estrictamente decrecientes cuyo primer elemento es n. Por ejemplo,

Soluciones

Pensamiento

Viejo como el mundo es
-dijo un doctor-, olvidado,
por sabido, y enterrado
cuál la momia de Ramsés.

Mas el doctor no sabía
que hoy es siempre todavía.

Antonio Machado

Último dígito no nulo del factorial

El factorial de 7 es

por tanto, el último dígito no nulo del factorial de 7 es 4.

Definir la función

tal que (ultimoNoNuloFactorial n) es el último dígito no nulo del factorial de n. Por ejemplo,

Comprobar con QuickCheck que si n es mayor que 4, entonces el último dígito no nulo del factorial de n es par.

Soluciones

Pensamiento

Busca el tu esencial,
que no está en ninguna parte
y en todas partes está.

Antonio Machado