Cambio con el menor número de monedas

El problema del cambio con el menor número de monedas consiste en, dada una lista ms de tipos de monedas (con infinitas monedas de cada tipo) y una cantidad objetivo x, calcular el menor número de monedas de ms cuya suma es x. Por ejemplo, con monedas de 1, 3 y 4 céntimos se puede obtener 6 céntimos de 4 formas

El menor número de monedas que se necesita es 2. En cambio, con monedas de 2, 5 y 10 es imposible obtener 3.

Definir

tal que (monedas ms x) es el menor número de monedas de ms cuya suma es x, si es posible obtener dicha suma y es Nothing en caso contrario. Por ejemplo,

Soluciones

Pensamiento

Demos tiempo al tiempo:
para que el vaso rebose
hay que llenarlo primero.

Antonio Machado

Máxima longitud de sublistas crecientes

Definir la función

tal que (longitudMayorSublistaCreciente xs) es la el máximo de las longitudes de las sublistas crecientes de xs. Por ejemplo,

Soluciones

Pensamiento

No es el yo fundamental
eso que busca el poeta,
sino el tú esencial.

Antonio Machado

Diagonales invertidas

Definir la función

tal que (diagonalesInvertidas q) es la matriz obtenida invirtiendo el
orden de los elementos de la diagonal principal y de la diagonal
secundaria de q. Por ejemplo,

Soluciones

Pensamiento

Despertad, cantores:
acaben los ecos,
empiecen las voces.

Antonio Machado

Números cíclopes

Un número cíclope es un número natural cuya representación binaria sólo tiene un cero en el centro. Por ejemplo,

Definir las funciones

tales que

  • (esCiclope n) se verifica si el número natual n es cíclope. Por ejemplo,

  • ciclopes es la lista de los número cíclopes. Por ejemplo,

  • (graficaCiclopes n) dibuja la gráfica del último dígito de los n primeros números cíclopes. Por ejemplo, (graficaCiclopes n) dibuja

Soluciones

Pensamiento

¿Sabes cuando el agua suena,
si es agua de cumbre o valle,
de plaza, jardín o huerta?
Cantores, dejad
palmas y jaleo
para los demás.

Antonio Machado

Combinaciones divisibles

Definir la función

tal que (tieneCombinacionDivisible xs m) se verifica si existe alguna forma de combinar todos los elementos de la lista (con las operaciones suma o resta) de forma que el resultado sea divisible por m. Por ejemplo,

En el primer ejemplo, 1 – 2 + 3 + 4 + 6 = 12 es una combinación divisible por 4. En el segundo ejemplo, las combinaciones de [1,3,9] son

y ninguna de las 4 es divisible por 2.

Soluciones

Pensamiento

El que espera desespera,
dice la voz popular.
¡Qué verdad tan verdadera!
La verdad es lo que es,
y sigue siendo verdad
aunque se piense al revés.

Antonio Machado