Particiones en sumas de cuadrados

Definir las funciones

tales que

  • (particionesCuadradas n) es la listas de conjuntos de cuadrados cuya suma es n. Por ejemplo,

  • (nParticionesCuadradas n) es el número de conjuntos de cuadrados cuya suma es n. Por ejemplo,

  • (graficaParticionesCuadradas n) dibuja la gráfica de la sucesión

Por ejemplo, con (graficaParticionesCuadradas 100) se obtiene

Particiones_en_sumas_de_cuadrados

Soluciones

Referencias

Números automórficos

Un número n es automórfico si los últimos dígitos de su cuadrado son los dígitos de n. Por ejemplo, 5, 6, 76 y 890625 son números automórficos ya que 5² = 25, 6² = 36, 76² = 5776 y 890625² = 793212890625.

Definir la sucesión

tal que sus elementos son los números automórficos. Por ejemplo,

Soluciones

Referencias

Sumas de potencias de 3 primos

Los primeros números de la forma p²+q³+r⁴, con p, q y r primos son

Definir la sucesión

cuyos elementos son los números que se pueden escribir de la forma p²+q³+r⁴, con p, q y r primos. Por ejemplo,

Soluciones

Múltiplos con ceros y unos

Se observa que todos los primeros números naturales tienen al menos un múltiplo no nulo que está formado solamente por ceros y unos. Por ejemplo, 1×10=10, 2×5=10, 3×37=111, 4×25=100, 5×2=10, 6×185=1110; 7×143=1001; 8X125=1000; 9×12345679=111111111.

Definir la función

tal que (multiplosCon1y0 n) es la lista de los múltiplos de n cuyos dígitos son 1 ó 0. Por ejemplo,

Comprobar con QuickCheck que todo entero positivo tiene algún múltiplo cuyos dígitos son 1 ó 0.

Soluciones

Regresión lineal

Dadas dos listas de valores

la ecuación de la recta de regresión de ys sobre xs es y = a+bx, donde

Definir la función

tal que (regresionLineal xs ys) es el par (a,b) de los coeficientes de la recta de regresión de ys sobre xs. Por ejemplo, para los valores

se tiene

Definir el procedimiento

tal que (grafica xs ys) pinte los puntos correspondientes a las listas de valores xs e ys y su recta de regresión. Por ejemplo, con (grafica ejX ejY) se obtiene el siguiente dibujo

Regresion_lineal

Soluciones

Dígitos en la factorización

El enunciado del problema 652 de Números y algo más es el siguiente

Si factorizamos los factoriales de un número en función de sus divisores primos y sus potencias, ¿Cuál es el menor número n tal que entre los factores primos y los exponentes de estos, n! contiene los dígitos del cero al nueve? Por ejemplo

  • 6! = 2⁴x3²x5¹, le faltan los dígitos 0,6,7,8 y 9
  • 12! = 2¹⁰x3⁵x5²x7¹x11¹, le faltan los dígitos 4,6,8 y 9

Definir la función

tal que (digitosDeFactorizacion n) es el conjunto de los dígitos que aparecen en la factorización de n. Por ejemplo,

Usando la función anterior, calcular la solución del problema.

Comprobar con QuickCheck que si n es mayor que 100, entonces

Soluciones

La solución en Maxima

Cantidad de números Pentanacci impares

Los números de Pentanacci se definen mediante las ecuaciones

Los primeros números de Pentanacci son

Se obseeva que

  • hasta P(5) hay 1 impar: el 1 (aunque aparece dos veces);
  • hasta P(7) hay 2 impares distintos: 1 y 31;
  • hasta P(10) hay 3 impares distintos: 1, 31 y 61;
  • hasta P(15) hay 5 impares distintos: 1, 31 y 61, 1793 y 3525.

Definir la función

tal que (nPentanacciImpares n) es la cantidad de números impares distintos desde P(0) hasta P(n). Por ejemplo,

Soluciones

Diagonales de matrices como listas

Las matrices se pueden representar como listas de listas de la misma longitud, donde cada uno de sus elementos representa una fila de la matriz.

Definir la función

tal que (diagonal xss) es la diagonal de la matriz xss. Por ejemplo,

Soluciones

Solución con Maxima

Números como suma de N sumandos

Definir la función

tal que (sumas n xs) es la lista de los números que se pueden obtener como suma de n, o menos, elementos de xs. Por ejemplo,

Soluciones

Solución con Maxima

Anotación de la profundidad de los nodos

Los árboles binarios con datos en los nodos y hojas se definen por

Por ejemplo, el árbol

se representa por

Anotando cada elemento del árbol anterior con su profundidad, se obtiene el árbol siguiente

Definir la función

tal que (anotado x) es el árbol obtenido anotando los elementos de x con su profundidad. Por ejemplo,

Soluciones

Compactación de listas

Definir la función

tal que (compacta xs) es la lista obtenida al compactar xs con las siguientes reglas:

  1. se eliminan los elementos Nothing;
  2. si dos elementos consecutivos tienen el mismo valor, se sustituyen por el sucesor de su valor y
  3. los restantes elementos no se cambian.

Por ejemplo,

Soluciones

Eliminación de espacios extremos

Definir la función

tal que (sinEspaciosExtremos cs) es la cadena obtenida eliminando los espacios blancos de los extremos de la cadena cs. Por ejemplo,

Soluciones

Números primos de Hilbert

Un número de Hilbert es un entero positivo de la forma 4n+1. Los primeros números de Hilbert son 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, …

Un primo de Hilbert es un número de Hilbert n que no es divisible por ningún número de Hilbert menor que n (salvo el 1). Los primeros primos de Hilbert son 5, 9, 13, 17, 21, 29, 33, 37, 41, 49, 53, 57, 61, 69, 73, 77, 89, 93, 97, 101, 109, 113, 121, 129, 133, 137, …

Definir la sucesión

tal que sus elementos son los primos de Hilbert. Por ejemplo,

Soluciones

Ordenación por frecuencia

Definir la función

tal que (ordPorFrecuencia xs) es la lista obtenidas ordenando los elementos de xs por su frecuencia, de los que aparecen menos a los que aparecen más. Por ejemplo,

Soluciones

El algoritmo binario del mcd

El máximo común divisor (mcd) de dos números enteros no negativos se puede calcular mediante un algoritmo binario basado en las siguientes propiedades:

  1. Si a,b son pares, entonces mcd(a,b) = 2*mcd(a/2,b/2)
  2. Si a es par y b impar, entonces mcd(a,b) = mcd(a/2,b)
  3. Si a es impar y b par, entonces mcd(a,b) = mcd(a,b/2)
  4. Si a y b son impares y a > b, entonces mcd(a,b) = mcd((a-b)/2,b)
  5. Si a y b son impares y a < b, entonces mcd(a,b) = mcd(a,(b-a)/2)
  6. mcd(a,0) = a
  7. mcd(0,b) = b
  8. mcd(a,a) = a

Por ejemplo, el cálculo del mcd(660,420) es

Definir la función

Definir la función

tal que (mcd a b) es el máximo común divisor de a y b calculado mediante el algoritmo binario del mcd. Por ejemplo,

Comprobar con QuickCheck que, para los enteros no negativos, las funciones mcd y gcd son equivalentes.

Soluciones