Máxima suma de caminos en un triángulo

Los triángulos se pueden representar mediante listas de listas. Por ejemplo, el triángulo

se representa por

Definir la función

tal que (maximaSuma xss) es el máximo de las sumas de los de los caminos en el triángulo xss donde los caminos comienzan en el elemento de la primera fila, en cada paso se mueve a uno de sus dos elementos adyacentes en la fila siguiente y terminan en la última fila. Por ejemplo,

Read More «Máxima suma de caminos en un triángulo»

Caminos en un triángulo

Los triángulos se pueden representar mediante listas de listas. Por ejemplo, el triángulo

se representa por

Definir la función

tal que (caminos xss) es la lista de los caminos en el triángulo donde los caminos comienzan en el elemento de la primera fila, en cada paso se mueve a uno de sus dos elementos adyacentes en la fila siguiente y terminan en la última fila. Por ejemplo,

Read More «Caminos en un triángulo»

Máximos locales

Un máximo local de una lista es un elemento de la lista que es mayor que su predecesor y que su sucesor en la lista. Por ejemplo, 5 es un máximo local de [3,2,5,3,7,7,1,6,2] ya que es mayor que 2 (su predecesor) y que 3 (su sucesor).

Definir la función

tal que (maximosLocales xs) es la lista de los máximos locales de la lista xs. Por ejemplo,

Read More «Máximos locales»

Mayor órbita de la sucesión de Collatz

Se considera la siguiente operación, aplicable a cualquier número entero positivo:

  • Si el número es par, se divide entre 2.
  • Si el número es impar, se multiplica por 3 y se suma 1.

Dado un número cualquiera, podemos calcular su órbita; es decir, las imágenes sucesivas al iterar la función. Por ejemplo, la órbita de 13 es

Si observamos este ejemplo, la órbita de 13 es periódica, es decir,
se repite indefinidamente a partir de un momento dado). La conjetura
de Collatz dice que siempre alcanzaremos el 1 para cualquier número
con el que comencemos. Ejemplos:

  • Empezando en n = 6 se obtiene 6, 3, 10, 5, 16, 8, 4, 2, 1.
  • Empezando en n = 11 se obtiene: 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1.
  • Empezando en n = 27, la sucesión tiene 112 pasos, llegando hasta
    9232 antes de descender a 1: 27, 82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242, 121, 364, 182, 91, 274, 137, 412, 206, 103, 310, 155, 466, 233, 700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890, 445, 1336, 668, 334, 167, 502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276, 638, 319, 958, 479, 1438, 719, 2158, 1079, 3238, 1619, 4858, 2429, 7288, 3644, 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077, 9232, 4616, 2308, 1154, 577, 1732, 866, 433, 1300, 650, 325, 976, 488, 244, 122, 61, 184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1.

Definir la función

tal que (mayoresGeneradores n) es la lista de los números menores o iguales que n cuyas órbitas de Collatz son las de mayor longitud. Por ejemplo,

Read More «Mayor órbita de la sucesión de Collatz»

Exponente en la factorización

Definir la función

tal que (exponente x n) es el exponente de x en la factorización prima de n (se supone que x > 1 y n > 0). Por ejemplo,

Read More «Exponente en la factorización»