Demostrar el teorema de Cantor; es decir, que no existe ninguna aplicación suprayectiva de un conjunto en su conjunto potencia.
Para ello, completar la siguiente teoría de Lean:
import data.set.basic open function variables {α : Type} example : ∀ f : α → set α, ¬ surjective f := sorry |
Soluciones con Lean
import data.set.basic open function variables {α : Type} -- 1ª demostración -- =============== example : ∀ f : α → set α, ¬ surjective f := begin intros f hf, let S := {i | i ∉ f i}, unfold surjective at hf, cases hf S with j hj, by_cases j ∈ S, { dsimp at h, apply h, rw hj, exact h, }, { apply h, rw ← hj at h, exact h, }, end -- 2ª demostración -- =============== example : ∀ f : α → set α, ¬ surjective f := begin intros f hf, let S := {i | i ∉ f i}, cases hf S with j hj, by_cases j ∈ S, { apply h, rwa hj, }, { apply h, rwa ← hj at h, }, end -- 3ª demostración -- =============== example : ∀ f : α → set α, ¬ surjective f := begin intros f hf, let S := {i | i ∉ f i}, cases hf S with j hj, have h : (j ∈ S) = (j ∉ S), from calc (j ∈ S) = (j ∉ f j) : set.mem_set_of_eq ... = (j ∉ S) : congr_arg not (congr_arg (has_mem.mem j) hj), exact false_of_a_eq_not_a h, end -- 4ª demostración -- =============== example : ∀ f : α → set α, ¬ surjective f := begin intros f hf, let S := {i | i ∉ f i}, cases hf S with j hj, have h : (j ∈ S) = (j ∉ S), { dsimp, exact congr_arg not (congr_arg (has_mem.mem j) hj), }, { exact false_of_a_eq_not_a (congr_arg not (congr_arg not h)), }, end -- 5ª demostración -- =============== example : ∀ f : α → set α, ¬ surjective f := cantor_surjective |
El código de las demostraciones se encuentra en GitHub y puede ejecutarse con el Lean Web editor.
La construcción de las demostraciones se muestra en el siguiente vídeo
Soluciones con Isabelle/HOL
theory Teorema_de_Cantor imports Main begin (* 1ª demostración *) theorem fixes f :: "'α ⇒ 'α set" shows "¬ surj f" proof (rule notI) assume "surj f" let ?S = "{i. i ∉ f i}" have "∃ j. ?S = f j" using ‹surj f› by (simp only: surjD) then obtain j where "?S = f j" by (rule exE) show False proof (cases "j ∈ ?S") assume "j ∈ ?S" then have "j ∉ f j" by (rule CollectD) moreover have "j ∈ f j" using ‹?S = f j› ‹j ∈ ?S› by (rule subst) ultimately show False by (rule notE) next assume "j ∉ ?S" with ‹?S = f j› have "j ∉ f j" by (rule subst) then have "j ∈ ?S" by (rule CollectI) with ‹j ∉ ?S› show False by (rule notE) qed qed (* 2ª demostración *) theorem fixes f :: "'α ⇒ 'α set" shows "¬ surj f" proof (rule notI) assume "surj f" let ?S = "{i. i ∉ f i}" have "∃ j. ?S = f j" using ‹surj f› by (simp only: surjD) then obtain j where "?S = f j" by (rule exE) have "j ∉ ?S" proof (rule notI) assume "j ∈ ?S" then have "j ∉ f j" by (rule CollectD) with ‹?S = f j› have "j ∉ ?S" by (rule ssubst) then show False using ‹j ∈ ?S› by (rule notE) qed moreover have "j ∈ ?S" proof (rule CollectI) show "j ∉ f j" proof (rule notI) assume "j ∈ f j" with ‹?S = f j› have "j ∈ ?S" by (rule ssubst) then have "j ∉ f j" by (rule CollectD) then show False using ‹j ∈ f j› by (rule notE) qed qed ultimately show False by (rule notE) qed (* 3ª demostración *) theorem fixes f :: "'α ⇒ 'α set" shows "¬ surj f" proof assume "surj f" let ?S = "{i. i ∉ f i}" have "∃ j. ?S = f j" using ‹surj f› by (simp only: surjD) then obtain j where "?S = f j" by (rule exE) have "j ∉ ?S" proof assume "j ∈ ?S" then have "j ∉ f j" by simp with ‹?S = f j› have "j ∉ ?S" by simp then show False using ‹j ∈ ?S› by simp qed moreover have "j ∈ ?S" proof show "j ∉ f j" proof assume "j ∈ f j" with ‹?S = f j› have "j ∈ ?S" by simp then have "j ∉ f j" by simp then show False using ‹j ∈ f j› by simp qed qed ultimately show False by simp qed (* 4ª demostración *) theorem fixes f :: "'α ⇒ 'α set" shows "¬ surj f" proof (rule notI) assume "surj f" let ?S = "{i. i ∉ f i}" have "∃ j. ?S = f j" using ‹surj f› by (simp only: surjD) then obtain j where "?S = f j" by (rule exE) have "j ∈ ?S = (j ∉ f j)" by (rule mem_Collect_eq) also have "… = (j ∉ ?S)" by (simp only: ‹?S = f j›) finally show False by (simp only: simp_thms(10)) qed (* 5ª demostración *) theorem fixes f :: "'α ⇒ 'α set" shows "¬ surj f" proof assume "surj f" let ?S = "{i. i ∉ f i}" have "∃ j. ?S = f j" using ‹surj f› by (simp only: surjD) then obtain j where "?S = f j" by (rule exE) have "j ∈ ?S = (j ∉ f j)" by simp also have "… = (j ∉ ?S)" using ‹?S = f j› by simp finally show False by simp qed (* 6ª demostración *) theorem fixes f :: "'α ⇒ 'α set" shows "¬ surj f" unfolding surj_def by best end |