Si a es un punto de acumulación de u, entonces ∀ε>0, ∀ N, ∃k≥N, |u(k)−a| < ε

Para extraer una subsucesión se aplica una función de extracción que conserva el orden; por ejemplo, la subsucesión

se ha obtenido con la función de extracción φ tal que φ(n) = 2*n.

En Lean, se puede definir que φ es una función de extracción por

También se puede definir que a es un límite de u por

Los puntos de acumulación de una sucesión son los límites de sus subsucesiones. En Lean se puede definir por

Demostrar que si a es un punto de acumulación de u, entonces

Para ello, completar la siguiente teoría de Lean:

[expand title=»Soluciones con Lean»]

Se puede interactuar con la prueba anterior en esta sesión con Lean.

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="lean"> y otra con </pre>
[/expand]

[expand title=»Soluciones con Isabelle/HOL»]

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="isar"> y otra con </pre>
[/expand]

Las funciones de extracción no están acotadas

Para extraer una subsucesión se aplica una función de extracción que conserva el orden; por ejemplo, la subsucesión

se ha obtenido con la función de extracción φ tal que φ(n) = 2*n.

En Lean, se puede definir que φ es una función de extracción por

Demostrar que las funciones de extracción no está acotadas; es decir, que si φ es una función de extracción, entonces

Para ello, completar la siguiente teoría de Lean:

[expand title=»Soluciones con Lean»]

Se puede interactuar con la prueba anterior en esta sesión con Lean.

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="lean"> y otra con </pre>
[/expand]

[expand title=»Soluciones con Isabelle/HOL»]

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="isar"> y otra con </pre>
[/expand]

Las particiones definen relaciones de equivalencia

Cada familia de conjuntos P define una relación de forma que dos elementos están relacionados si algún conjunto de P contiene a ambos elementos. Se puede definir en Lean por

Una familia de subconjuntos de X es una partición de X si cada elemento de X pertenece a un único conjunto de P y todos los elementos de P son no vacíos. Se puede definir en Lean por

Demostrar que si P es una partición de X, entonces la relación definida por P es una relación de equivalencia.

Para ello, completar la siguiente teoría de Lean:

[expand title=»Soluciones con Lean»]

Se puede interactuar con la prueba anterior en esta sesión con Lean.

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="lean"> y otra con </pre>
[/expand]

[expand title=»Soluciones con Isabelle/HOL»]

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="isar"> y otra con </pre>
[/expand]

Las particiones definen relaciones transitivas

Cada familia de conjuntos P define una relación de forma que dos elementos están relacionados si algún conjunto de P contiene a ambos elementos. Se puede definir en Lean por

Una familia de subconjuntos de X es una partición de X si cada de X pertenece a un único conjunto de P y todos los elementos de P son no vacíos. Se puede definir en Lean por

Demostrar que si P es una partición de X, entonces la relación definida por P es transitiva.

Para ello, completar la siguiente teoría de Lean:

[expand title=»Soluciones con Lean»]

Se puede interactuar con la prueba anterior en esta sesión con Lean.

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="lean"> y otra con </pre>
[/expand]

[expand title=»Soluciones con Isabelle/HOL»]

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="isar"> y otra con </pre>
[/expand]

Las familias de conjuntos definen relaciones simétricas

Cada familia de conjuntos P define una relación de forma que dos elementos están relacionados si algún conjunto de P contiene a ambos elementos. Se puede definir en Lean por

Demostrar que si P es una familia de subconjunt❙os de X, entonces la relación definida por P es simétrica.

Para ello, completar la siguiente teoría de Lean:

[expand title=»Soluciones con Lean»]

Se puede interactuar con la prueba anterior en esta sesión con Lean.

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="lean"> y otra con </pre>
[/expand]

[expand title=»Soluciones con Isabelle/HOL»]

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="isar"> y otra con </pre>
[/expand]