Menu Close

Imagen inversa de la intersección

En Lean, la imagen inversa de un conjunto s (de elementos de tipo por la función f (de tipo α → β) es el conjunto f ⁻¹' s de elementos x (de tipo α) tales que f x ∈ s.

Demostrar que f ⁻¹' (u ∩ v) = f ⁻¹' u ∩ f ⁻¹' v

Para ello, completar la siguiente teoría de Lean:

import data.set.basic
 
open set
 
variables {α : Type*} {β : Type*}
variable  f : α  β
variables u v : set β
 
example : f ⁻¹' (u ∩ v) = f ⁻¹' u ∩ f ⁻¹' v :=
sorry

Soluciones con Lean

import data.set.basic
 
open set
 
variables {α : Type*} {β : Type*}
variable  f : α  β
variables u v : set β
 
-- 1ª demostración
-- ===============
 
example : f ⁻¹' (u ∩ v) = f ⁻¹' u ∩ f ⁻¹' v :=
begin
  ext x,
  split,
  { intro h,
    split,
    { apply mem_preimage.mpr,
      rw mem_preimage at h,
      exact mem_of_mem_inter_left h, },
    { apply mem_preimage.mpr,
      rw mem_preimage at h,
      exact mem_of_mem_inter_right h, }},
  { intro h,
    apply mem_preimage.mpr,
    split,
    { apply mem_preimage.mp,
      exact mem_of_mem_inter_left h,},
    { apply mem_preimage.mp,
      exact mem_of_mem_inter_right h, }},
end
 
-- 2ª demostración
-- ===============
 
example : f ⁻¹' (u ∩ v) = f ⁻¹' u ∩ f ⁻¹' v :=
begin
  ext x,
  split,
  { intro h,
    split,
    { simp at *,
      exact h.1, },
    { simp at *,
      exact h.2, }},
  { intro h,
    simp at *,
    exact h, },
end
 
-- 3ª demostración
-- ===============
 
example : f ⁻¹' (u ∩ v) = f ⁻¹' u ∩ f ⁻¹' v :=
-- by hint
by finish
 
-- 4ª demostración
-- ===============
 
example : f ⁻¹' (u ∩ v) = f ⁻¹' u ∩ f ⁻¹' v :=
-- by library_search
preimage_inter
 
-- 5ª demostración
-- ===============
 
example : f ⁻¹' (u ∩ v) = f ⁻¹' u ∩ f ⁻¹' v :=
rfl

El código de las demostraciones se encuentra en GitHub y puede ejecutarse con el Lean Web editor.

La construcción de las demostraciones se muestra en el siguiente vídeo

Soluciones con Isabelle/HOL

theory Imagen_inversa_de_la_interseccion
imports Main
begin
 
section1ª demostración›
 
lemma "f -` (u ∩ v) = f -` u ∩ f -` v"
proof (rule equalityI)
  show "f -` (u ∩ v) ⊆ f -` u ∩ f -` v"
  proof (rule subsetI)
    fix x
    assume "x ∈ f -` (u ∩ v)"
    then have h : "f x ∈ u ∩ v"
      by (simp only: vimage_eq)
    have "x ∈ f -` u"
    proof -
      have "f x ∈ u"
        using h by (rule IntD1)
      then show "x ∈ f -` u"
        by (rule vimageI2)
    qed
    moreover
    have "x ∈ f -` v"
    proof -
      have "f x ∈ v"
        using h by (rule IntD2)
      then show "x ∈ f -` v"
        by (rule vimageI2)
    qed
    ultimately show "x ∈ f -` u ∩ f -` v"
      by (rule IntI)
  qed
next
  show "f -` u ∩ f -` v ⊆ f -` (u ∩ v)"
  proof (rule subsetI)
    fix x
    assume h2 : "x ∈ f -` u ∩ f -` v"
    have "f x ∈ u"
    proof -
      have "x ∈ f -` u"
        using h2 by (rule IntD1)
      then show "f x ∈ u"
        by (rule vimageD)
    qed
    moreover
    have "f x ∈ v"
    proof -
      have "x ∈ f -` v"
        using h2 by (rule IntD2)
      then show "f x ∈ v"
        by (rule vimageD)
    qed
    ultimately have "f x ∈ u ∩ v"
      by (rule IntI)
    then show "x ∈ f -` (u ∩ v)"
      by (rule vimageI2)
  qed
qed
 
section2ª demostración›
 
lemma "f -` (u ∩ v) = f -` u ∩ f -` v"
proof
  show "f -` (u ∩ v) ⊆ f -` u ∩ f -` v"
  proof
    fix x
    assume "x ∈ f -` (u ∩ v)"
    then have h : "f x ∈ u ∩ v"
      by simp
    have "x ∈ f -` u"
    proof -
      have "f x ∈ u"
        using h by simp
      then show "x ∈ f -` u"
        by simp
    qed
    moreover
    have "x ∈ f -` v"
    proof -
      have "f x ∈ v"
        using h by simp
      then show "x ∈ f -` v"
        by simp
    qed
    ultimately show "x ∈ f -` u ∩ f -` v"
      by simp
  qed
next
  show "f -` u ∩ f -` v ⊆ f -` (u ∩ v)"
  proof
    fix x
    assume h2 : "x ∈ f -` u ∩ f -` v"
    have "f x ∈ u"
    proof -
      have "x ∈ f -` u"
        using h2 by simp
      then show "f x ∈ u"
        by simp
    qed
    moreover
    have "f x ∈ v"
    proof -
      have "x ∈ f -` v"
        using h2 by simp
      then show "f x ∈ v"
        by simp
    qed
    ultimately have "f x ∈ u ∩ v"
      by simp
    then show "x ∈ f -` (u ∩ v)"
      by simp
  qed
qed
 
section3ª demostración›
 
lemma "f -` (u ∩ v) = f -` u ∩ f -` v"
proof
  show "f -` (u ∩ v) ⊆ f -` u ∩ f -` v"
  proof
    fix x
    assume h1 : "x ∈ f -` (u ∩ v)"
    have "x ∈ f -` u" using h1 by simp
    moreover
    have "x ∈ f -` v" using h1 by simp
    ultimately show "x ∈ f -` u ∩ f -` v" by simp
  qed
next
  show "f -` u ∩ f -` v ⊆ f -` (u ∩ v)"
  proof
    fix x
    assume h2 : "x ∈ f -` u ∩ f -` v"
    have "f x ∈ u" using h2 by simp
    moreover
    have "f x ∈ v" using h2 by simp
    ultimately have "f x ∈ u ∩ v" by simp
    then show "x ∈ f -` (u ∩ v)" by simp
  qed
qed
 
section4ª demostración›
 
lemma "f -` (u ∩ v) = f -` u ∩ f -` v"
  by (simp only: vimage_Int)
 
section5ª demostración›
 
lemma "f -` (u ∩ v) = f -` u ∩ f -` v"
  by auto
 
end

Escribe un comentario