Imagen inversa de la intersección
En Lean, la imagen inversa de un conjunto s (de elementos de tipo  por la función f (de tipo α → β) es el conjunto f ⁻¹' s de elementos x (de tipo α) tales que f x ∈ s.
Demostrar que f ⁻¹' (u ∩ v) = f ⁻¹' u ∩ f ⁻¹' v
Para ello, completar la siguiente teoría de Lean:
| 1 2 3 4 5 6 7 8 9 10 | import data.set.basic open set variables {α : Type*} {β : Type*} variable  f : α → β variables u v : set β example : f ⁻¹' (u ∩ v) = f ⁻¹' u ∩ f ⁻¹' v := sorry | 
Soluciones con Lean
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 | import data.set.basic open set variables {α : Type*} {β : Type*} variable  f : α → β variables u v : set β -- 1ª demostración -- =============== example : f ⁻¹' (u ∩ v) = f ⁻¹' u ∩ f ⁻¹' v := begin   ext x,   split,   { intro h,     split,     { apply mem_preimage.mpr,       rw mem_preimage at h,       exact mem_of_mem_inter_left h, },     { apply mem_preimage.mpr,       rw mem_preimage at h,       exact mem_of_mem_inter_right h, }},   { intro h,     apply mem_preimage.mpr,     split,     { apply mem_preimage.mp,       exact mem_of_mem_inter_left h,},     { apply mem_preimage.mp,       exact mem_of_mem_inter_right h, }}, end -- 2ª demostración -- =============== example : f ⁻¹' (u ∩ v) = f ⁻¹' u ∩ f ⁻¹' v := begin   ext x,   split,   { intro h,     split,     { simp at *,       exact h.1, },     { simp at *,       exact h.2, }},   { intro h,     simp at *,     exact h, }, end -- 3ª demostración -- =============== example : f ⁻¹' (u ∩ v) = f ⁻¹' u ∩ f ⁻¹' v := -- by hint by finish -- 4ª demostración -- =============== example : f ⁻¹' (u ∩ v) = f ⁻¹' u ∩ f ⁻¹' v := -- by library_search preimage_inter -- 5ª demostración -- =============== example : f ⁻¹' (u ∩ v) = f ⁻¹' u ∩ f ⁻¹' v := rfl | 
El código de las demostraciones se encuentra en GitHub y puede ejecutarse con el Lean Web editor.
La construcción de las demostraciones se muestra en el siguiente vídeo
Soluciones con Isabelle/HOL
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 | theory Imagen_inversa_de_la_interseccion imports Main begin section ‹1ª demostración› lemma "f -` (u ∩ v) = f -` u ∩ f -` v" proof (rule equalityI)   show "f -` (u ∩ v) ⊆ f -` u ∩ f -` v"   proof (rule subsetI)     fix x     assume "x ∈ f -` (u ∩ v)"     then have h : "f x ∈ u ∩ v"       by (simp only: vimage_eq)     have "x ∈ f -` u"     proof -       have "f x ∈ u"         using h by (rule IntD1)       then show "x ∈ f -` u"         by (rule vimageI2)     qed     moreover     have "x ∈ f -` v"     proof -       have "f x ∈ v"         using h by (rule IntD2)       then show "x ∈ f -` v"         by (rule vimageI2)     qed     ultimately show "x ∈ f -` u ∩ f -` v"       by (rule IntI)   qed next   show "f -` u ∩ f -` v ⊆ f -` (u ∩ v)"   proof (rule subsetI)     fix x     assume h2 : "x ∈ f -` u ∩ f -` v"     have "f x ∈ u"     proof -       have "x ∈ f -` u"         using h2 by (rule IntD1)       then show "f x ∈ u"         by (rule vimageD)     qed     moreover     have "f x ∈ v"     proof -       have "x ∈ f -` v"         using h2 by (rule IntD2)       then show "f x ∈ v"         by (rule vimageD)     qed     ultimately have "f x ∈ u ∩ v"       by (rule IntI)     then show "x ∈ f -` (u ∩ v)"       by (rule vimageI2)   qed qed section ‹2ª demostración› lemma "f -` (u ∩ v) = f -` u ∩ f -` v" proof   show "f -` (u ∩ v) ⊆ f -` u ∩ f -` v"   proof     fix x     assume "x ∈ f -` (u ∩ v)"     then have h : "f x ∈ u ∩ v"       by simp     have "x ∈ f -` u"     proof -       have "f x ∈ u"         using h by simp       then show "x ∈ f -` u"         by simp     qed     moreover     have "x ∈ f -` v"     proof -       have "f x ∈ v"         using h by simp       then show "x ∈ f -` v"         by simp     qed     ultimately show "x ∈ f -` u ∩ f -` v"       by simp   qed next   show "f -` u ∩ f -` v ⊆ f -` (u ∩ v)"   proof     fix x     assume h2 : "x ∈ f -` u ∩ f -` v"     have "f x ∈ u"     proof -       have "x ∈ f -` u"         using h2 by simp       then show "f x ∈ u"         by simp     qed     moreover     have "f x ∈ v"     proof -       have "x ∈ f -` v"         using h2 by simp       then show "f x ∈ v"         by simp     qed     ultimately have "f x ∈ u ∩ v"       by simp     then show "x ∈ f -` (u ∩ v)"       by simp   qed qed section ‹3ª demostración› lemma "f -` (u ∩ v) = f -` u ∩ f -` v" proof   show "f -` (u ∩ v) ⊆ f -` u ∩ f -` v"   proof     fix x     assume h1 : "x ∈ f -` (u ∩ v)"     have "x ∈ f -` u" using h1 by simp     moreover     have "x ∈ f -` v" using h1 by simp     ultimately show "x ∈ f -` u ∩ f -` v" by simp   qed next   show "f -` u ∩ f -` v ⊆ f -` (u ∩ v)"   proof     fix x     assume h2 : "x ∈ f -` u ∩ f -` v"     have "f x ∈ u" using h2 by simp     moreover     have "f x ∈ v" using h2 by simp     ultimately have "f x ∈ u ∩ v" by simp     then show "x ∈ f -` (u ∩ v)" by simp   qed qed section ‹4ª demostración› lemma "f -` (u ∩ v) = f -` u ∩ f -` v"   by (simp only: vimage_Int) section ‹5ª demostración› lemma "f -` (u ∩ v) = f -` u ∩ f -` v"   by auto end |