En ℝ, si x ≤ y, entonces y ≰ x ↔ x ≠ y

Demostrar con Lean4 que si \(x\) e \(y\) son números reales tales que \(x ≤ y\), entonces \(y ≰ x ↔ x ≠ y\).

Para ello, completar la siguiente teoría de Lean4:

Demostración en lenguaje natural

Para demostrar la equivalencia, demostraremos cada una de las implicaciones.

Para demostrar la primera, supongamos que \(y ≰ x\) y que \(x = y\). Entonces, \(y ≤ x\) que es una contradicción.

Para demostrar la segunda, supongamos que \(x ≠ y\) y que \(y ≤ x\). Entonces, por la hipótesis y la antisimetría, se tiene que \(x = y\) lo que es una contradicción.

Demostraciones con Lean4

Demostraciones interactivas

Se puede interactuar con las demostraciones anteriores en Lean 4 Web.

Referencias

Escribe un comentario