Si (∃ x, y ∈ ℝ)[z = x² + y² ∨ z = x² + y² + 1], entonces z ≥ 0

Demostrar con Lean4 que si \((∃ x, y ∈ ℝ)[z = x² + y² ∨ z = x² + y² + 1]\), entonces \(z ≥ 0\).

Para ello, completar la siguiente teoría de Lean4:

Read More «Si (∃ x, y ∈ ℝ)[z = x² + y² ∨ z = x² + y² + 1], entonces z ≥ 0»