Si x divide a w, entonces también divide a y(xz)+x²+w²
Demostrar con Lean4 que si \(x\) divide a \(w\), entonces también divide a \(y(xz)+x^2+w^2\).
Para ello, completar la siguiente teoría de Lean4:
1 2 3 4 5 6 7 |
import Mathlib.Data.Real.Basic variable (w x y z : ℕ) example (h : x ∣ w) : x ∣ y * (x * z) + x^2 + w^2 := by sorry |
Demostración en lenguaje natural
Por la divisibilidad de la suma basta probar que
\begin{align}
x &\mid yxz \tag{1} \\
x &\mid x^2 \tag{2} \\
x &\mid w^2 \tag{3}
\end{align}
Para demostrar (1), por la divisibilidad del producto se tiene
\[ x \mid xz\]
y, de nuevo por la divisibilidad del producto,
\[ x \mid y(xz)\]
La propiedad (2) se tiene por la definición de cuadrado y la divisibilidad del producto.
La propiedad (3) se tiene por la definición de cuadrado, la hipótesis y la divisibilidad del producto.
Demostraciones con Lean4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
import Mathlib.Data.Real.Basic variable (w x y z : ℕ) -- 1ª demostración example (h : x ∣ w) : x ∣ y * (x * z) + x^2 + w^2 := by have h1 : x ∣ x * z := dvd_mul_right x z have h2 : x ∣ y * (x * z) := dvd_mul_of_dvd_right h1 y have h3 : x ∣ x^2 := by apply dvd_mul_left have h4 : x ∣ w * w := dvd_mul_of_dvd_left h w have h5 : x ∣ w^2 := by rwa [← pow_two w] at h4 have h6 : x ∣ y * (x * z) + x^2 := dvd_add h2 h3 show x ∣ y * (x * z) + x^2 + w^2 exact dvd_add h6 h5 -- 2ª demostración example (h : x ∣ w) : x ∣ y * (x * z) + x^2 + w^2 := by apply dvd_add { apply dvd_add { apply dvd_mul_of_dvd_right apply dvd_mul_right } { rw [pow_two] apply dvd_mul_right }} { rw [pow_two] apply dvd_mul_of_dvd_left h } -- 3ª demostración example (h : x ∣ w) : x ∣ y * (x * z) + x^2 + w^2 := by repeat' apply dvd_add { apply dvd_mul_of_dvd_right apply dvd_mul_right } { rw [pow_two] apply dvd_mul_right } { rw [pow_two] apply dvd_mul_of_dvd_left h } -- Lemas usados -- ============ -- #check (dvd_add : x ∣ y → x ∣ z → x ∣ y + z) -- #check (dvd_mul_left x y : x ∣ y * x) -- #check (dvd_mul_right x y : x ∣ x * y) -- #check (dvd_mul_of_dvd_left : x ∣ y → ∀ (c : ℕ), x ∣ y * c) -- #check (dvd_mul_of_dvd_right : x ∣ y → ∀ (c : ℕ), x ∣ c * y) -- #check (pow_two x : x ^ 2 = x * x) |
Demostraciones interactivas
Se puede interactuar con las demostraciones anteriores en Lean 4 Web.
Referencias
- J. Avigad y P. Massot. Mathematics in Lean, p. 19.