Si (m ∣ n ∧ m ≠ n), entonces (m ∣ n ∧ ¬(n ∣ m))

Demostrar con Lean4 que si (m ∣ n ∧ m ≠ n), entonces (m ∣ n ∧ ¬(n ∣ m)).

Para ello, completar la siguiente teoría de Lean4:

Demostración en lenguaje natural

La primera parte de la conclusión coincide con la primera de la hipótesis. Nos queda demostrar la segunda parte; es decir, que (¬(n | m)). Para ello, supongamos que (n | m). Entonces, por la propiedad antisimétrica de la divisibilidad y la primera parte de la hipótesis, se tiene que (m = n) en contradicción con la segunda parte de la hipótesis.

Demostraciones con Lean4

Demostraciones interactivas

Se puede interactuar con las demostraciones anteriores en Lean 4 Web.

Referencias

Escribe un comentario