s ∪ ⋂ i, A i = ⋂ i, (A i ∪ s)
Demostrar con Lean4 que
\[ s ∪ ⋂_i A_i = ⋂_i (A_i ∪ s) \]
Para ello, completar la siguiente teoría de Lean4:
1 2 3 4 5 6 7 8 9 |
import Mathlib.Data.Set.Basic import Mathlib.Tactic open Set variable {α : Type} variable (s : Set α) variable (A : ℕ → Set α) example : s ∪ (⋂ i, A i) = ⋂ i, (A i ∪ s) := by sorry |
1. Demostración en lenguaje natural
Tenemos que demostrar que para todo \(x\),
\[ x ∈ s ∪ ⋂_i A_i ↔ x ∈ ⋂_i (A i ∪ s) \]
Lo haremos mediante la siguiente cadena de equivalencias
\begin{align}
x ∈ s ∪ ⋂_i A_i &↔ x ∈ s ∨ x ∈ ⋂_i A_i \\
&↔ x ∈ s ∨ (∀ i)[x ∈ A_i] \\
&↔ (∀ i)[x ∈ s ∨ x ∈ A_i] \\
&↔ (∀ i)[x ∈ A_i ∨ x ∈ s] \\
&↔ (∀ i)[x ∈ A_i ∪ s] \\
&↔ x ∈ ⋂_i (A_i ∪ s)
\end{align}
2. Demostraciones con Lean4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
import Mathlib.Data.Set.Basic import Mathlib.Tactic open Set variable {α : Type} variable (s : Set α) variable (A : ℕ → Set α) -- 1ª demostración -- =============== example : s ∪ (⋂ i, A i) = ⋂ i, (A i ∪ s) := by ext x -- x : α -- ⊢ x ∈ s ∪ ⋂ (i : ℕ), A i ↔ x ∈ ⋂ (i : ℕ), A i ∪ s calc x ∈ s ∪ ⋂ i, A i ↔ x ∈ s ∨ x ∈ ⋂ i, A i := by simp only [mem_union] _ ↔ x ∈ s ∨ ∀ i, x ∈ A i := by simp only [mem_iInter] _ ↔ ∀ i, x ∈ s ∨ x ∈ A i := by simp only [forall_or_left] _ ↔ ∀ i, x ∈ A i ∨ x ∈ s := by simp only [or_comm] _ ↔ ∀ i, x ∈ A i ∪ s := by simp only [mem_union] _ ↔ x ∈ ⋂ i, A i ∪ s := by simp only [mem_iInter] -- 2ª demostración -- =============== example : s ∪ (⋂ i, A i) = ⋂ i, (A i ∪ s) := by ext x -- x : α -- ⊢ x ∈ s ∪ ⋂ (i : ℕ), A i ↔ x ∈ ⋂ (i : ℕ), A i ∪ s simp only [mem_union, mem_iInter] -- ⊢ (x ∈ s ∨ ∀ (i : ℕ), x ∈ A i) ↔ ∀ (i : ℕ), x ∈ A i ∨ x ∈ s constructor . -- ⊢ (x ∈ s ∨ ∀ (i : ℕ), x ∈ A i) → ∀ (i : ℕ), x ∈ A i ∨ x ∈ s intros h i -- h : x ∈ s ∨ ∀ (i : ℕ), x ∈ A i -- i : ℕ -- ⊢ x ∈ A i ∨ x ∈ s rcases h with (xs | xAi) . -- xs : x ∈ s right -- ⊢ x ∈ s exact xs . -- xAi : ∀ (i : ℕ), x ∈ A i left -- ⊢ x ∈ A i exact xAi i . -- ⊢ (∀ (i : ℕ), x ∈ A i ∨ x ∈ s) → x ∈ s ∨ ∀ (i : ℕ), x ∈ A i intro h -- h : ∀ (i : ℕ), x ∈ A i ∨ x ∈ s -- ⊢ x ∈ s ∨ ∀ (i : ℕ), x ∈ A i by_cases cxs : x ∈ s . -- cxs : x ∈ s left -- ⊢ x ∈ s exact cxs . -- cns : ¬x ∈ s right -- ⊢ ∀ (i : ℕ), x ∈ A i intro i -- i : ℕ -- ⊢ x ∈ A i rcases h i with (xAi | xs) . -- ⊢ x ∈ A i exact xAi . -- xs : x ∈ s exact absurd xs cxs -- 3ª demostración -- =============== example : s ∪ (⋂ i, A i) = ⋂ i, (A i ∪ s) := by ext x -- x : α -- ⊢ x ∈ s ∪ ⋂ (i : ℕ), A i ↔ x ∈ ⋂ (i : ℕ), A i ∪ s simp only [mem_union, mem_iInter] -- ⊢ (x ∈ s ∨ ∀ (i : ℕ), x ∈ A i) ↔ ∀ (i : ℕ), x ∈ A i ∨ x ∈ s constructor . -- ⊢ (x ∈ s ∨ ∀ (i : ℕ), x ∈ A i) → ∀ (i : ℕ), x ∈ A i ∨ x ∈ s rintro (xs | xI) i . -- xs : x ∈ s -- i : ℕ -- ⊢ x ∈ A i ∨ x ∈ s right -- ⊢ x ∈ s exact xs . -- xI : ∀ (i : ℕ), x ∈ A i -- i : ℕ -- ⊢ x ∈ A i ∨ x ∈ s left -- ⊢ x ∈ A i exact xI i . -- ⊢ (∀ (i : ℕ), x ∈ A i ∨ x ∈ s) → x ∈ s ∨ ∀ (i : ℕ), x ∈ A i intro h -- h : ∀ (i : ℕ), x ∈ A i ∨ x ∈ s -- ⊢ x ∈ s ∨ ∀ (i : ℕ), x ∈ A i by_cases cxs : x ∈ s . -- cxs : x ∈ s left -- ⊢ x ∈ s exact cxs . -- cxs : ¬x ∈ s right -- ⊢ ∀ (i : ℕ), x ∈ A i intro i -- i : ℕ -- ⊢ x ∈ A i cases h i . -- h : x ∈ A i assumption . -- h : x ∈ s contradiction -- Lemas usados -- ============ -- variable (x : α) -- variable (s t : Set α) -- variable (a b q : Prop) -- variable (p : ℕ → Prop) -- #check (absurd : a → ¬a → b) -- #check (forall_or_left : (∀ x, q ∨ p x) ↔ q ∨ ∀ x, p x) -- #check (mem_iInter : x ∈ ⋂ i, A i ↔ ∀ i, x ∈ A i) -- #check (mem_union x a b : x ∈ s ∪ t ↔ x ∈ s ∨ x ∈ t) -- #check (or_comm : a ∨ b ↔ b ∨ a) |
Se puede interactuar con las demostraciones anteriores en Lean 4 Web.
3. Demostraciones con Isabelle/HOL
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
theory Union_con_interseccion_general imports Main begin (* 1ª demostración *) lemma "s ∪ (⋂ i ∈ I. A i) = (⋂ i ∈ I. A i ∪ s)" proof (rule equalityI) show "s ∪ (⋂ i ∈ I. A i) ⊆ (⋂ i ∈ I. A i ∪ s)" proof (rule subsetI) fix x assume "x ∈ s ∪ (⋂ i ∈ I. A i)" then show "x ∈ (⋂ i ∈ I. A i ∪ s)" proof (rule UnE) assume "x ∈ s" show "x ∈ (⋂ i ∈ I. A i ∪ s)" proof (rule INT_I) fix i assume "i ∈ I" show "x ∈ A i ∪ s" using ‹x ∈ s› by (rule UnI2) qed next assume h1 : "x ∈ (⋂ i ∈ I. A i)" show "x ∈ (⋂ i ∈ I. A i ∪ s)" proof (rule INT_I) fix i assume "i ∈ I" with h1 have "x ∈ A i" by (rule INT_D) then show "x ∈ A i ∪ s" by (rule UnI1) qed qed qed next show "(⋂ i ∈ I. A i ∪ s) ⊆ s ∪ (⋂ i ∈ I. A i)" proof (rule subsetI) fix x assume h2 : "x ∈ (⋂ i ∈ I. A i ∪ s)" show "x ∈ s ∪ (⋂ i ∈ I. A i)" proof (cases "x ∈ s") assume "x ∈ s" then show "x ∈ s ∪ (⋂ i ∈ I. A i)" by (rule UnI1) next assume "x ∉ s" have "x ∈ (⋂ i ∈ I. A i)" proof (rule INT_I) fix i assume "i ∈ I" with h2 have "x ∈ A i ∪ s" by (rule INT_D) then show "x ∈ A i" proof (rule UnE) assume "x ∈ A i" then show "x ∈ A i" by this next assume "x ∈ s" with ‹x ∉ s› show "x ∈ A i" by (rule notE) qed qed then show "x ∈ s ∪ (⋂ i ∈ I. A i)" by (rule UnI2) qed qed qed (* 2ª demostración *) lemma "s ∪ (⋂ i ∈ I. A i) = (⋂ i ∈ I. A i ∪ s)" proof show "s ∪ (⋂ i ∈ I. A i) ⊆ (⋂ i ∈ I. A i ∪ s)" proof fix x assume "x ∈ s ∪ (⋂ i ∈ I. A i)" then show "x ∈ (⋂ i ∈ I. A i ∪ s)" proof assume "x ∈ s" show "x ∈ (⋂ i ∈ I. A i ∪ s)" proof fix i assume "i ∈ I" show "x ∈ A i ∪ s" using ‹x ∈ s› by simp qed next assume h1 : "x ∈ (⋂ i ∈ I. A i)" show "x ∈ (⋂ i ∈ I. A i ∪ s)" proof fix i assume "i ∈ I" with h1 have "x ∈ A i" by simp then show "x ∈ A i ∪ s" by simp qed qed qed next show "(⋂ i ∈ I. A i ∪ s) ⊆ s ∪ (⋂ i ∈ I. A i)" proof fix x assume h2 : "x ∈ (⋂ i ∈ I. A i ∪ s)" show "x ∈ s ∪ (⋂ i ∈ I. A i)" proof (cases "x ∈ s") assume "x ∈ s" then show "x ∈ s ∪ (⋂ i ∈ I. A i)" by simp next assume "x ∉ s" have "x ∈ (⋂ i ∈ I. A i)" proof fix i assume "i ∈ I" with h2 have "x ∈ A i ∪ s" by (rule INT_D) then show "x ∈ A i" proof assume "x ∈ A i" then show "x ∈ A i" by this next assume "x ∈ s" with ‹x ∉ s› show "x ∈ A i" by simp qed qed then show "x ∈ s ∪ (⋂ i ∈ I. A i)" by simp qed qed qed (* 3ª demostración *) lemma "s ∪ (⋂ i ∈ I. A i) = (⋂ i ∈ I. A i ∪ s)" proof show "s ∪ (⋂ i ∈ I. A i) ⊆ (⋂ i ∈ I. A i ∪ s)" proof fix x assume "x ∈ s ∪ (⋂ i ∈ I. A i)" then show "x ∈ (⋂ i ∈ I. A i ∪ s)" proof assume "x ∈ s" then show "x ∈ (⋂ i ∈ I. A i ∪ s)" by simp next assume "x ∈ (⋂ i ∈ I. A i)" then show "x ∈ (⋂ i ∈ I. A i ∪ s)" by simp qed qed next show "(⋂ i ∈ I. A i ∪ s) ⊆ s ∪ (⋂ i ∈ I. A i)" proof fix x assume h2 : "x ∈ (⋂ i ∈ I. A i ∪ s)" show "x ∈ s ∪ (⋂ i ∈ I. A i)" proof (cases "x ∈ s") assume "x ∈ s" then show "x ∈ s ∪ (⋂ i ∈ I. A i)" by simp next assume "x ∉ s" then show "x ∈ s ∪ (⋂ i ∈ I. A i)" using h2 by simp qed qed qed (* 4ª demostración *) lemma "s ∪ (⋂ i ∈ I. A i) = (⋂ i ∈ I. A i ∪ s)" proof show "s ∪ (⋂ i ∈ I. A i) ⊆ (⋂ i ∈ I. A i ∪ s)" proof fix x assume "x ∈ s ∪ (⋂ i ∈ I. A i)" then show "x ∈ (⋂ i ∈ I. A i ∪ s)" proof assume "x ∈ s" then show ?thesis by simp next assume "x ∈ (⋂ i ∈ I. A i)" then show ?thesis by simp qed qed next show "(⋂ i ∈ I. A i ∪ s) ⊆ s ∪ (⋂ i ∈ I. A i)" proof fix x assume h2 : "x ∈ (⋂ i ∈ I. A i ∪ s)" show "x ∈ s ∪ (⋂ i ∈ I. A i)" proof (cases "x ∈ s") case True then show ?thesis by simp next case False then show ?thesis using h2 by simp qed qed qed (* 5ª demostración *) lemma "s ∪ (⋂ i ∈ I. A i) = (⋂ i ∈ I. A i ∪ s)" by auto end |