Reseña: A formally verified proof of the central limit theorem

Se ha publicado un artículo de razonamiento formalizado en Isabelle/HOL sobre probabilidad titulado A formally verified proof of the central limit theorem

Sus autores son

Su resumen es

We describe a proof of the Central Limit Theorem that has been formally verified in the Isabelle proof assistant. Our formalization builds upon and extends Isabelle’s libraries for analysis and measure-theoretic probability. The proof of the theorem uses characteristic functions, which are a kind of Fourier transform, to demonstrate that, under suitable hypotheses, sums of random variables converge weakly to the standard normal distribution. We also discuss the libraries and infrastructure that supported the formalization, and reflect on some of the lessons we have learned from the effort.

El código de las correspondientes teorías en Isabelle/HOL se encuentra aquí dentro del desarrollo de la teoría de la probabilidad.

Este artículo puede servir de lectura complementaria en los cursos de Razonamiento automático, Razonamiento asistido por ordenador y Lógica computacional y teoría de modelos.

Reseña: Refinement based verification of imperative data structures

Se ha publicado un artículo de razonamiento formalizado en Isabelle/HOL sobre algorítmica titulado Refinement based verification of imperative data structures

Su autor es Peter Lammich (de la Chair for Logic and Verification en la Univ. técnica de Munich).

Su resumen es

In this paper we present a stepwise refinement based top-down approach to verified imperative data structures. Our approach is modular in the sense that already verified data structures can be used for construction of more complex data structures. Moreover, our data structures can be used as building blocks for the verification of algorithms. Our tool chain supports refinement down to executable code in various programming languages, and is fully implemented in Isabelle/HOL, such that its trusted code base is only the inference kernel and the code generator of Isabelle/HOL.

As a case study, we verify an indexed heap data structure, and use it to generate an efficient verified implementation of Dijkstra’s algorithm.

El trabajo se ha presentado en el CPP 2016 (The 5th ACM SIGPLAN Conference on Certified Programs and Proofs).

El código de las correspondientes teorías en Isabelle/HOL se encuentra aquí.

Reseña: Compass-free navigation of mazes

Se ha publicado un artículo de razonamiento formalizado en HOL Light sobre geometría titulado Compass-free navigation of mazes

Sus autores son Phil Scott y Jacques Fleuriot (de la Universidad de Edimburgo).

Su resumen es

If you find yourself in a corridor of a standard maze, a sure and easy way to escape is to simply pick the left (or right) wall, and then follow it along its twists and turns and around the dead-ends till you eventually arrive at the exit. But what happens when you cannot tell left from right? What if you cannot tell North from South? What if you cannot judge distances, and have no idea what it means to follow a wall in a given direction? The possibility of escape in these circumstances is suggested in the statement of an unproven theorem given in David Hilbert’s celebrated Foundations of Geometry, in which he effectively claimed that a standard maze could be fully navigated using axioms and concepts based solely on the relations of points lying on lines in a specified order. We discuss our algorithm for this surprisingly challenging version of the maze navigation problem, and our HOL Light verification of its correctness from Hilbert’s axioms.

El trabajo se ha presentado en el SCSS 2016 (7th International Symposium on Symbolic Computation in Software Science).

El código de las correspondientes teorías en HOL Light se encuentra aquí.

Reseña: Flag-based big-step semantics

Se ha publicado un artículo de razonamiento formalizado en Coq sobre semántica de lenguajes de programación titulado Flag-based big-step semantics.

Sus autores son

Su resumen es

Structural operational semantic specifications come in different styles: small-step and big-step. A problem with the big-step style is that specifying divergence and abrupt termination gives rise to annoying duplication. We present a novel approach to representing divergence and abrupt termination in big-step semantics using status flags. This avoids the duplication problem, and uses fewer rules and premises for representing divergence than previous approaches in the literature.

El trabajo se ha desarrollado en el proyecto PLanCompS (Programming Language Components and Specifications).

El código de las correspondientes teorías en Coq se encuentra aquí.

Este artículo puede servir de lectura complementaria en los cursos de Razonamiento automático, Razonamiento asistido por ordenador y Lógica computacional y teoría de modelos.

Reseña: Perron-Frobenius theorem for spectral radius analysis

Se ha publicado un artículo de razonamiento formalizado en Isabelle/HOL titulado Perron-Frobenius theorem for spectral radius analysis

Sus autores son

Su resumen es

The spectral radius of a matrix A is the maximum norm of all eigenvalues of A. In previous work we already formalized that for a complex matrix A, the values in A^n grow polynomially in n if and only if the spectral radius is at most one. One problem with the above characterization is the determination of all complex eigenvalues. In case A contains only non-negative real values, a simplification is possible with the help of the Perron-Frobenius theorem, which tells us that it suffices to consider only the real eigenvalues of A, i.e., applying Sturm’s method can decide the polynomial growth of A^n.

We formalize the Perron-Frobenius theorem based on a proof via Brouwer’s fixpoint theorem, which is available in the HOL multivariate analysis (HMA) library. Since the results on the spectral radius is based on matrices in the Jordan normal form (JNF) library, we further develop a connection which allows us to easily transfer theorems between HMA and JNF. With this connection we derive the combined result: if A is a non-negative real matrix, and no real eigenvalue of A is strictly larger than one, then An is polynomially bounded in n.

El trabajo se ha publicado en The Archive of Formal Proofs.

El código de las correspondientes teorías en Isabelle/HOL se encuentra aquí.