LMF2013: Misceláneas

En la clase de hoy del curso Lógica matemática y fundamentos se comentado distintas cuestiones.

En primer lugar, se ha respondido la pregunta de cómo demostrar por deducción natural la fórmula (¬q → ¬p) ∨ (q → p). Su dificulad está en el uso del principio del tercio excluso y en la demostración por casos (eliminación de la disyunción).

En segundo lugar, se ha respondido la pregunta de cómo usar lemas auxiliares en las demostraciones con Isabelle/HOL.

En tercer lugar, se ha comentado que APLI2 sólo comprueba que la formalización es correcta; pero no que el argumento sea correcto.

En cuarto lugar, se ha explicado cómo se puede demostrar automáticamente argumentos que no se puede con el método auto, pero sí con metis o meson. Como ejemplo, se ha demostrado el ejercicio 8 de la relación 6 con metis.

En quinto lugar, se ha explicado cómo se puede comprobar que los modelos calculados por QuickCheck son contramodelos. Para ello, se ha usado el ejercicio el ejercicio 13 de la relación 6.

Para resaltar la importancia del principio del tercio excluso, se ha demostrado que:

  • la fórmula ∃x(P(x) → ∀yP(y)) es correcta y
  • existen dos números irracionales x e y tales que xʸ es racional.

Finalmente, terminamos comentando cuestiones de filosofía de la matemática. En particular, sobre el formalismo, el intuicionismo y el constructivismo.

LMF2013: Ejercicios de deducción natural en lógica proposicional con Isabelle/HOL

En las clases del miércoles y de hoy del curso Lógica matemática y fundamentos se han comentado soluciones de los ejercicios de deducción natural en lógica proposicional con Isabelle/HOL.

Para cada uno de los ejercicios se ha presentado distintas demostraciones: desde la detallada (que sea parecida a la mostrada en las transparencias) hasta la automática.

La teoría con la relación de ejercicios es
Read More “LMF2013: Ejercicios de deducción natural en lógica proposicional con Isabelle/HOL”

LMF2013: Deducción natural proposicional en Isabelle/HOL (2)

En la clase de hoy del curso Lógica matemática y fundamentos se ha completado el estudio de la formalización en Isabelle/HOL de las demostraciones por deducción natural estudiadas en el tema 2 que empezamos en la clase anterior.

Para cada uno de los ejemplos se ha presentado distintas demostraciones: desde la detallada (que sea parecida a la mostrada en las transparencias) hasta la automática.

La teoría con los ejemplos presentados en la clase es la siguiente:
Read More “LMF2013: Deducción natural proposicional en Isabelle/HOL (2)”

Reseña: Mechanising Turing machines and computability theory in Isabelle/HOL

Se ha publicado un artículo de razonamiento formalizado en Isabelle/HOL sobre modelos de computación titulado Mechanising Turing machines and computability theory in Isabelle/HOL.

Sus autores son Jian Xu, Xingyuan Zhang y Christian Urban.

Su resumen es

We present a formalised theory of computability in the theorem prover Isabelle/HOL. This theorem prover is based on classical logic which precludes direct reasoning about computability: every boolean predicate is either true or false because of the law of excluded middle. The only way to reason about computability in a classical theorem prover is to formalise a concrete model of computation. We formalise Turing machines and relate them to abacus machines and recursive functions. We also formalise a universal Turing machine and Hoare-style reasoning techniques that allow us to reason about Turing machine programs. Our theory can be used to formalise other computability results.

Las teorías desarrolladas en Isabelle/HOL se encuentran en aquí.