Reseña: Formalization of a Newton series representation of polynomials

Se ha publicado un artículo de razonamiento formalizado en Coq sobre álgebra titulado Formalization of a Newton series representation of polynomials.

Sus autores son Cyril Cohen y Boris Djalal (del grupo Marelle en Inria Sophia Antipolis, Francia)

Su resumen es

We formalize an algorithm to change the representation of a polynomial to a Newton power series. This provides a way to compute efficiently polynomials whose roots are the sums or products of roots of other polynomials, and hence provides a base component of efficient computation for algebraic numbers. In order to achieve this, we formalize a notion of truncated power series and develop an abstract theory of poles of fractions.

El trabajo se ha presentado en el CPP 2016 (The 5th ACM SIGPLAN Conference on Certified Programs and Proofs).

El código de las correspondientes teorías en Coq se encuentra aquí.

Este artículo puede servir de lectura complementaria en los cursos de Razonamiento automático, Razonamiento asistido por ordenador y Lógica computacional y teoría de modelos.

Reseña: A short Isabelle/HOL tutorial for the functional programmer

Se ha publicado un tutorial de razonamiento formalizado con Isabelle/HOL titulado A short Isabelle/HOL tutorial for the functional programmer.

Su autor es Thomas Genet (de la Universidad de Rennes 1, Francia).

Su resumen es

The objective of this (very) short tutorial is to help any functional programmer to quickly put its hand on Isabelle/HOL and catch a glimpse of its power. Then, if you want some more, you should refer to the extensive Isabelle/HOL tutorial and documentation available in the tool.

Este tutorial puede servir de lectura complementaria en los cursos de Lógica matemática y fundamentos, Razonamiento automático, Razonamiento asistido por ordenador y Lógica computacional y teoría de modelos.

Reseña: Fourier series formalization in ACL2(r)

Se ha publicado un artículo de razonamiento formalizado en ACL2 sobre análisis matemático titulado Fourier series formalization in ACL2(r).

Sus autores son Cuong K. Chau, Matt Kaufmann y Warren A. Hunt Jr. (de la Univ. of Texas en Austin)

Su resumen es

We formalize some basic properties of Fourier series in the logic of ACL2(r), which is a variant of ACL2 that supports reasoning about the real and complex numbers by way of non-standard analysis. More specifically, we extend a framework for formally evaluating definite integrals of real-valued, continuous functions using the Second Fundamental Theorem of Calculus. Our extended framework is also applied to functions containing free arguments. Using this framework, we are able to prove the orthogonality relationships between trigonometric functions, which are the essential properties in Fourier series analysis. The sum rule for definite integrals of indexed sums is also formalized by applying the extended framework along with the First Fundamental Theorem of Calculus and the sum rule for differentiation. The Fourier coefficient formulas of periodic functions are then formalized from the orthogonality relations and the sum rule for integration. Consequently, the uniqueness of Fourier sums is a straightforward corollary.

We also present our formalization of the sum rule for definite integrals of infinite series in ACL2(r). Part of this task is to prove the Dini Uniform Convergence Theorem and the continuity of a limit function under certain conditions. A key technique in our proofs of these theorems is to apply the overspill principle from non-standard analysis.

El trabajo se ha presentado en el ACL2 2015 (13th International Workshop on the ACL2 Theorem Prover and Its Applications).