LMF2014: Ejercicios de deducción en lógica de primer orden con Isabelle/HOL (2)
En la clase de hoy del curso Lógica matemática y fundamentos se ha explicado cómo demostrar mediante deducción natural teoremas de primer orden con Isabelle/HOL. En concreto, se han visto los ejercicios 13, 15, 16, 19, 21, 32 y 35 de la relación 6.
Los ejercicios y sus soluciones se muestran a continuación:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
theory R6 imports Main begin text {* --------------------------------------------------------------- Ejercicio 13. Demostrar (∀x. P x) ∨ (∀x. Q x) ⊢ ∀x. P x ∨ Q x ------------------------------------------------------------------ *} -- "La demostración automática es" lemma ejercicio_13a: "(∀x. P x) ∨ (∀x. Q x) ⟹ ∀x. P x ∨ Q x" by auto -- "La demostración estructurada es" lemma ejercicio_13b: assumes "(∀x. P x) ∨ (∀x. Q x)" shows "∀x. P x ∨ Q x" proof fix a note assms thus "P a ∨ Q a" proof assume "∀x. P x" hence "P a" .. thus "P a ∨ Q a" .. next assume "∀x. Q x" hence "Q a" .. thus "P a ∨ Q a" .. qed qed -- "La demostración detallada es" lemma ejercicio_13c: assumes "(∀x. P x) ∨ (∀x. Q x)" shows "∀x. P x ∨ Q x" proof (rule allI) fix a note assms thus "P a ∨ Q a" proof (rule disjE) assume "∀x. P x" hence "P a" by (rule allE) thus "P a ∨ Q a" by (rule disjI1) next assume "∀x. Q x" hence "Q a" by (rule allE) thus "P a ∨ Q a" by (rule disjI2) qed qed text {* --------------------------------------------------------------- Ejercicio 15. Demostrar ∀x y. P y ⟶ Q x ⊢ (∃y. P y) ⟶ (∀x. Q x) ------------------------------------------------------------------ *} -- "La demostración automática es" lemma ejercicio_15a: "∀x y. P y ⟶ Q x ⟹ (∃y. P y) ⟶ (∀x. Q x)" by auto -- "La demostración estructurada es" lemma ejercicio_15b: assumes "∀x y. P y ⟶ Q x" shows "(∃y. P y) ⟶ (∀x. Q x)" proof assume "∃y. P y" then obtain b where "P b" .. show "∀x. Q x" proof fix a have "∀y. P y ⟶ Q a" using assms .. hence "P b ⟶ Q a" .. thus "Q a" using `P b` .. qed qed -- "La demostración detallada es" lemma ejercicio_15c: assumes "∀x y. P y ⟶ Q x" shows "(∃y. P y) ⟶ (∀x. Q x)" proof (rule impI) assume "∃y. P y" then obtain b where "P b" by (rule exE) show "∀x. Q x" proof (rule allI) fix a have "∀y. P y ⟶ Q a" using assms by (rule allE) hence "P b ⟶ Q a" by (rule allE) thus "Q a" using `P b` by (rule mp) qed qed text {* --------------------------------------------------------------- Ejercicio 16. Demostrar ¬(∀x. ¬(P x)) ⊢ ∃x. P x ------------------------------------------------------------------ *} -- "La demostración automática es" lemma ejercicio_16a: "¬(∀x. ¬(P x)) ⟹ ∃x. P x" by auto -- "La demostración estructurada es" lemma ejercicio_16b: assumes "¬(∀x. ¬(P x))" shows "∃x. P x" proof (rule ccontr) assume "¬(∃x. P x)" have "∀x. ¬(P x)" proof fix a show "¬(P a)" proof assume "P a" hence "∃x. P x" .. with `¬(∃x. P x)` show False .. qed qed with assms show False .. qed -- "La demostración detallada es" lemma ejercicio_16c: assumes "¬(∀x. ¬(P x))" shows "∃x. P x" proof (rule ccontr) assume "¬(∃x. P x)" have "∀x. ¬(P x)" proof (rule allI) fix a show "¬(P a)" proof assume "P a" hence "∃x. P x" by (rule exI) with `¬(∃x. P x)` show False by (rule notE) qed qed with assms show False by (rule notE) qed text {* --------------------------------------------------------------- Ejercicio 19. Demostrar P a ⟶ (∀x. Q x) ⊢ ∀x. P a ⟶ Q x ------------------------------------------------------------------ *} -- "La demostración automática es" lemma ejercicio_19a: "P a ⟶ (∀x. Q x) ⟹ ∀x. P a ⟶ Q x" by auto -- "La demostración estructurada es" lemma ejercicio_19b: assumes "P a ⟶ (∀x. Q x)" shows "∀x. P a ⟶ Q x" proof fix b show "P a ⟶ Q b" proof assume "P a" with assms have "∀x. Q x" .. thus "Q b" .. qed qed -- "La demostración detallada es" lemma ejercicio_19c: assumes "P a ⟶ (∀x. Q x)" shows "∀x. P a ⟶ Q x" proof (rule allI) fix b show "P a ⟶ Q b" proof (rule impI) assume "P a" with assms have "∀x. Q x" by (rule mp) thus "Q b" by (rule allE) qed qed text {* --------------------------------------------------------------- Ejercicio 21. Demostrar {∀x. P x ∨ Q x, ∃x. ¬(Q x), ∀x. R x ⟶ ¬(P x)} ⊢ ∃x. ¬(R x) ------------------------------------------------------------------ *} -- "La demostración automática es" lemma ejercicio_21a: "⟦∀x. P x ∨ Q x; ∃x. ¬(Q x); ∀x. R x ⟶ ¬(P x)⟧ ⟹ ∃x. ¬(R x)" by auto -- "La demostración estructurada es" lemma ejercicio_21b: assumes "∀x. P x ∨ Q x" "∃x. ¬(Q x)" "∀x. R x ⟶ ¬(P x)" shows "∃x. ¬(R x)" proof - obtain a where "¬(Q a)" using assms(2) .. have "P a ∨ Q a" using assms(1) .. hence "P a" proof assume "P a" thus "P a" . next assume "Q a" with `¬(Q a)` show "P a" .. qed hence "¬¬(P a)" by (rule notnotI) have "R a ⟶ ¬(P a)" using assms(3) .. hence "¬(R a)" using `¬¬(P a)` by (rule mt) thus "∃x. ¬(R x)" .. qed -- "La demostración detallada es" lemma ejercicio_21c: assumes "∀x. P x ∨ Q x" "∃x. ¬(Q x)" "∀x. R x ⟶ ¬(P x)" shows "∃x. ¬(R x)" proof - obtain a where "¬(Q a)" using assms(2) by (rule exE) have "P a ∨ Q a" using assms(1) by (rule allE) hence "P a" proof (rule disjE) assume "P a" thus "P a" by this next assume "Q a" with `¬(Q a)` show "P a" by (rule notE) qed hence "¬¬(P a)" by (rule notnotI) have "R a ⟶ ¬(P a)" using assms(3) by (rule allE) hence "¬(R a)" using `¬¬(P a)` by (rule mt) thus "∃x. ¬(R x)" by (rule exI) qed text {* --------------------------------------------------------------- Ejercicio 32. Demostrar o refutar ∃x y. R x y ∨ R y x; ¬(∃x. R x x)⟧ ⟹ ∃x y. x ≠ y ------------------------------------------------------------------ *} -- "La demostración automática es" lemma ejercicio_32a: fixes R :: "'c ⇒ 'c ⇒ bool" assumes "∃x y. R x y ∨ R y x" "¬(∃x. R x x)" shows "∃(x::'c) y. x ≠ y" using assms by metis -- "La demostración estructurada es" lemma ejercicio_32b: fixes R :: "'c ⇒ 'c ⇒ bool" assumes "∃x y. R x y ∨ R y x" "¬(∃x. R x x)" shows "∃(x::'c) y. x ≠ y" proof - obtain a where "∃y. R a y ∨ R y a" using assms(1) .. then obtain b where "R a b ∨ R b a" .. hence "a ≠ b" proof assume "R a b" show "a ≠ b" proof assume "a = b" hence "R b b" using `R a b` by (rule subst) hence "∃x. R x x" .. with assms(2) show False .. qed next assume "R b a" show "a ≠ b" proof assume "a = b" hence "R a a" using `R b a` by (rule ssubst) hence "∃x. R x x" .. with assms(2) show False .. qed qed hence "∃y. a ≠ y" .. thus "∃(x::'c) y. x ≠ y" .. qed -- "La demostración detallada es" lemma ejercicio_32c: fixes R :: "'c ⇒ 'c ⇒ bool" assumes "∃x y. R x y ∨ R y x" "¬(∃x. R x x)" shows "∃(x::'c) y. x ≠ y" proof - obtain a where "∃y. R a y ∨ R y a" using assms(1) by (rule exE) then obtain b where "R a b ∨ R b a" by (rule exE) hence "a ≠ b" proof (rule disjE) assume "R a b" show "a ≠ b" proof (rule notI) assume "a = b" hence "R b b" using `R a b` by (rule subst) hence "∃x. R x x" by (rule exI) with assms(2) show False by (rule notE) qed next assume "R b a" show "a ≠ b" proof (rule notI) assume "a = b" hence "R a a" using `R b a` by (rule ssubst) hence "∃x. R x x" by (rule exI) with assms(2) show False by (rule notE) qed qed hence "∃y. a ≠ y" by (rule exI) thus "∃(x::'c) y. x ≠ y" by (rule exI) qed text {* --------------------------------------------------------------- Ejercicio 35. Demostrar o refutar {∀y. Q a y, ∀x y. Q x y ⟶ Q (s x) (s y)} ⊢ ∃z. Qa z ∧ Q z (s (s a)) ------------------------------------------------------------------ *} -- "La demostración automática es" lemma ejercicio_35a: "⟦∀y. Q a y; ∀x y. Q x y ⟶ Q (s x) (s y)⟧ ⟹ ∃z. Q a z ∧ Q z (s (s a))" by auto -- "La demostración estructura es" lemma ejercicio_35b: assumes "∀y. Q a y" "∀x y. Q x y ⟶ Q (s x) (s y)" shows "∃z. Q a z ∧ Q z (s (s a))" proof - have "Q a (s a)" using assms(1) .. have "∀y. Q a y ⟶ Q (s a) (s y)" using assms(2) .. hence "Q a (s a) ⟶ Q (s a) (s (s a))" .. hence "Q (s a) (s (s a))" using `Q a (s a)` .. with `Q a (s a)` have "Q a (s a) ∧ Q (s a) (s (s a))" .. thus "∃z. Q a z ∧ Q z (s (s a))" .. qed -- "La demostración detallada es" lemma ejercicio_35c: assumes "∀y. Q a y" "∀x y. Q x y ⟶ Q (s x) (s y)" shows "∃z. Q a z ∧ Q z (s (s a))" proof - have "Q a (s a)" using assms(1) by (rule allE) have "∀y. Q a y ⟶ Q (s a) (s y)" using assms(2) by (rule allE) hence "Q a (s a) ⟶ Q (s a) (s (s a))" by (rule allE) hence "Q (s a) (s (s a))" using `Q a (s a)` by (rule mp) with `Q a (s a)` have "Q a (s a) ∧ Q (s a) (s (s a))" by (rule conjI) thus "∃z. Q a z ∧ Q z (s (s a))" by (rule exI) qed end |