Menu Close

Etiqueta: suchThat

Código de las alergias

Para la determinación de las alergia se utiliza los siguientes códigos para los alérgenos:

   Huevos ........   1
   Cacahuetes ....   2
   Mariscos ......   4
   Fresas ........   8
   Tomates .......  16
   Chocolate .....  32
   Polen .........  64
   Gatos ......... 128

Así, si Juan es alérgico a los cacahuetes y al chocolate, su puntuación es 34 (es decir, 2+32).

Los alérgenos se representan mediante el siguiente tipo de dato

  data Alergeno = Huevos
                | Cacahuetes
                | Mariscos
                | Fresas
                | Tomates
                | Chocolate
                | Polen
                | Gatos
    deriving (Enum, Eq, Show, Bounded)

Definir la función

   alergias :: Int -> [Alergeno]

tal que (alergias n) es la lista de alergias correspondiente a una puntuación n. Por ejemplo,

   λ> alergias 1
   [Huevos]
   λ> alergias 2
   [Cacahuetes]
   λ> alergias 3
   [Huevos,Cacahuetes]
   λ> alergias 5
   [Huevos,Mariscos]
   λ> alergias 255
   [Huevos,Cacahuetes,Mariscos,Fresas,Tomates,Chocolate,Polen,Gatos]

Soluciones

[schedule expon=’2022-04-18′ expat=»06:00″]

  • Las soluciones se pueden escribir en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

[/schedule]

[schedule on=’2022-04-18′ at=»06:00″]

import Data.List (subsequences)
import Test.QuickCheck
 
data Alergeno =
    Huevos
  | Cacahuetes
  | Mariscos
  | Fresas
  | Tomates
  | Chocolate
  | Polen
  | Gatos
  deriving (Enum, Eq, Show, Bounded)
 
-- 1ª solución
-- ===========
 
alergias1 :: Int -> [Alergeno]
alergias1 n =
  [a | (a,c) <- zip alergenos codigos, c `elem` descomposicion n]
 
-- codigos es la lista de los códigos de los alergenos.
codigos :: [Int]
codigos = [2^x| x <- [0..7]]
 
-- (descomposicion n) es la descomposición de n como sumas de potencias
-- de 2. Por ejemplo,
--    descomposicion 3    ==  [1,2]
--    descomposicion 5    ==  [1,4]
--    descomposicion 248  ==  [8,16,32,64,128]
--    descomposicion 255  ==  [1,2,4,8,16,32,64,128]
descomposicion :: Int -> [Int]
descomposicion n =
  head [xs | xs <- subsequences codigos, sum xs == n]
 
-- 2ª solución
-- ===========
 
alergias2 :: Int -> [Alergeno]
alergias2 = map toEnum . codigosAlergias
 
-- (codigosAlergias n) es la lista de códigos de alergias
-- correspondiente a una puntuación n. Por ejemplo,
--    codigosAlergias 1  ==  [0]
--    codigosAlergias 2  ==  [1]
--    codigosAlergias 3  ==  [0,1]
--    codigosAlergias 4  ==  [2]
--    codigosAlergias 5  ==  [0,2]
--    codigosAlergias 6  ==  [1,2]
codigosAlergias :: Int -> [Int]
codigosAlergias = aux [0..7]
  where aux []     _             = []
        aux (x:xs) n | odd n     = x : aux xs (n `div` 2)
                     | otherwise = aux xs (n `div` 2)
 
-- 3ª solución
-- ===========
 
alergias3 :: Int -> [Alergeno]
alergias3 = map toEnum . codigosAlergias3
 
codigosAlergias3 :: Int -> [Int]
codigosAlergias3 n =
  [x | (x,y) <- zip [0..7] (int2bin n), y == 1]
 
-- (int2bin n) es la representación binaria del número n. Por ejemplo,
--    int2bin 10  ==  [0,1,0,1]
-- ya que 10 = 0*1 + 1*2 + 0*4 + 1*8
int2bin :: Int -> [Int]
int2bin n | n < 2     = [n]
          | otherwise = n `rem` 2 : int2bin (n `div` 2)
 
-- 4ª solución
-- ===========
 
alergias4 :: Int -> [Alergeno]
alergias4 = map toEnum . codigosAlergias4
 
codigosAlergias4 :: Int -> [Int]
codigosAlergias4 n =
  map fst (filter ((== 1) . snd) (zip  [0..7] (int2bin n)))
 
-- 5ª solución
-- ===========
 
alergias5 :: Int -> [Alergeno]
alergias5 = map (toEnum . fst)
          . filter ((1 ==) . snd)
          . zip [0..7]
          . int2bin
 
-- 6ª solución
-- ===========
 
alergias6 :: Int -> [Alergeno]
alergias6 = aux alergenos
  where aux []     _             = []
        aux (x:xs) n | odd n     = x : aux xs (n `div` 2)
                     | otherwise = aux xs (n `div` 2)
 
-- alergenos es la lista de los alergenos. Por ejemplo.
--    take 3 alergenos  ==  [Huevos,Cacahuetes,Mariscos]
alergenos :: [Alergeno]
alergenos = [minBound..maxBound]
 
-- Comprobación de equivalencia
-- ============================
 
-- La propiedad es
prop_alergias :: Property
prop_alergias =
  forAll (arbitrary `suchThat` esValido) $ \n ->
  all (== alergias1 n)
      [alergias2 n,
       alergias3 n,
       alergias4 n,
       alergias5 n,
       alergias6 n]
  where esValido x = 1 <= x && x <= 255
 
-- La comprobación es
--    λ> quickCheck prop_alergias
--    +++ OK, passed 100 tests.
 
-- Comparación de eficiencia
-- =========================
 
-- La comparación es
--    λ> last (map alergias1 [1..255])
--    [Huevos,Cacahuetes,Mariscos,Fresas,Tomates,Chocolate,Polen,Gatos]
--    (0.02 secs, 1,657,912 bytes)
--    λ> last (map alergias2 [1..255])
--    [Huevos,Cacahuetes,Mariscos,Fresas,Tomates,Chocolate,Polen,Gatos]
--    (0.01 secs, 597,080 bytes)
--    λ> last (map alergias3 [1..255])
--    [Huevos,Cacahuetes,Mariscos,Fresas,Tomates,Chocolate,Polen,Gatos]
--    (0.01 secs, 597,640 bytes)
--    λ> last (map alergias4 [1..255])
--    [Huevos,Cacahuetes,Mariscos,Fresas,Tomates,Chocolate,Polen,Gatos]
--    (0.01 secs, 598,152 bytes)
--    λ> last (map alergias5 [1..255])
--    [Huevos,Cacahuetes,Mariscos,Fresas,Tomates,Chocolate,Polen,Gatos]
--    (0.01 secs, 596,888 bytes)

El código se encuentra en [GitHub](https://github.com/jaalonso/Exercitium/blob/main/src/Alergias.hs).

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

[/schedule]

Teorema de existencia de divisores

El teorema de existencia de divisores afirma que

En cualquier subconjunto de {1, 2, …, 2m} con al menos m+1 elementos existen números distintos a, b tales que a divide a b.

Un conjunto de números naturales xs es mayoritario si existe un m tal que la lista de xs es un subconjunto de {1,2,…,2m} con al menos m+1 elementos. Por ejemplo, {2,3,5,6} porque es un subconjunto de {1,2,…,6} con más de 3 elementos.

Definir las funciones

   divisoresMultiplos :: [Integer] -> [(Integer,Integer)]
   esMayoritario :: [Integer] -> Bool

tales que

  • (divisores xs) es la lista de pares de elementos distintos de (a,b) tales que a divide a b. Por ejemplo,
     divisoresMultiplos [2,3,5,6]  ==  [(2,6),(3,6)]
     divisoresMultiplos [2,3,5]    ==  []
     divisoresMultiplos [4..8]     ==  [(4,8)]
  • (esMayoritario xs) se verifica xs es mayoritario. Por ejemplo,
     esMayoritario [2,3,5,6]  ==  True
     esMayoritario [2,3,5]    ==  False

Comprobar con QuickCheck el teorema de existencia de divisores; es decir, en cualquier conjunto mayoritario existen números distintos a, b tales que a divide a b. Para la comprobación se puede usar el siguiente generador de conjuntos mayoritarios

   mayoritario :: Gen [Integer]
   mayoritario = do
     m' <- arbitrary
     let m = 1 + abs m'
     xs' <- sublistOf [1..2*m] `suchThat` (\ys -> genericLength ys > m)
     return xs'

con lo que la propiedad que hay que comprobar con QuickCheck es

   teorema_de_existencia_de_divisores :: Property
   teorema_de_existencia_de_divisores =
     forAll mayoritario (not . null . divisoresMultiplos)

Soluciones

import Data.List (genericLength)
import Test.QuickCheck
 
divisoresMultiplos :: [Integer] -> [(Integer,Integer)]
divisoresMultiplos xs =
  [(x,y) | x <- xs
         , y <- xs
         , y /= x
         , y `mod` x == 0]
 
esMayoritario :: [Integer] -> Bool
esMayoritario xs =
  not (null xs) && length xs > ceiling (n / 2) 
  where n = fromIntegral (maximum xs)
 
-- Comprobación del teorema
-- ========================
 
-- La propiedad es
teorema_de_existencia_de_divisores :: Property
teorema_de_existencia_de_divisores =
  forAll mayoritario (not . null . divisoresMultiplos)
 
-- mayoritario es un generador de conjuntos mayoritarios. Por ejemplo, 
--    λ> sample mayoritario
--    [1,2]
--    [2,5,7,8]
--    [1,2,8,10,14]
--    [3,8,11,12,13,15,18,19,22,23,25,26]
--    [1,3,4,6]
--    [3,6,9,11,12,14,17,19]
mayoritario :: Gen [Integer]
mayoritario = do
  m' <- arbitrary
  let m = 1 + abs m'
  xs' <- sublistOf [1..2*m] `suchThat` (\ys -> genericLength ys > m)
  return xs'
 
-- La comprobación es
--    λ> quickCheck teorema_de_existencia_de_divisores
--    +++ OK, passed 100 tests.

Pensamiento

Guiomar, Guiomar,
mírame en ti castigado:
reo de haberte creado,
ya no te puedo olvidar.

Antonio Machado