Menu Close

Etiqueta: succ

Índices de valores verdaderos

Definir la función

   indicesVerdaderos :: [Int] -> [Bool]

tal que (indicesVerdaderos xs) es la lista infinita de booleanos tal que sólo son verdaderos los elementos cuyos índices pertenecen a la lista estrictamente creciente xs. Por ejemplo,

   λ> take 6 (indicesVerdaderos [1,4])
   [False,True,False,False,True,False]
   λ> take 6 (indicesVerdaderos [0,2..])
   [True,False,True,False,True,False]
   λ> take 3 (indicesVerdaderos [])
   [False,False,False]
   λ> take 6 (indicesVerdaderos [1..])
   [False,True,True,True,True,True]
   λ> last (take (8*10^7) (indicesVerdaderos [0,5..]))
   False

Soluciones

import Data.List.Ordered (member)
import Test.QuickCheck
 
-- 1ª solución
-- ===========
 
indicesVerdaderos1 :: [Int] -> [Bool]
indicesVerdaderos1 []     = repeat False
indicesVerdaderos1 (x:ys) =
  replicate x False ++ [True] ++ indicesVerdaderos1 [y-x-1 | y <- ys]
 
-- 2ª solución
-- ===========
 
indicesVerdaderos2 :: [Int] -> [Bool]
indicesVerdaderos2 = aux 0
  where aux _ []     = repeat False
        aux n (x:xs) | x == n    = True  : aux (n+1) xs
                     | otherwise = False : aux (n+1) (x:xs)
 
-- 3ª solución
-- ===========
 
indicesVerdaderos3 :: [Int] -> [Bool]
indicesVerdaderos3 = aux [0..]
  where aux _      []                 = repeat False
        aux (i:is) (x:xs) | i == x    = True  : aux is xs
                          | otherwise = False : aux is (x:xs)
 
-- 4ª solución
-- ===========
 
indicesVerdaderos4 :: [Int] -> [Bool]
indicesVerdaderos4 xs = [pertenece x xs | x <- [0..]]
 
-- (pertenece x ys) se verifica si x pertenece a la lista estrictamente
-- creciente (posiblemente infinita) ys. Por ejemplo,
--    pertenece 9 [1,3..]  ==  True
--    pertenece 6 [1,3..]  ==  False
pertenece :: Int -> [Int] -> Bool
pertenece x ys = x `elem` takeWhile (<=x) ys
 
-- 5ª solución
-- ===========
 
indicesVerdaderos5 :: [Int] -> [Bool]
indicesVerdaderos5 xs = map (`pertenece2` xs) [0..]
 
pertenece2 :: Int -> [Int] -> Bool
pertenece2 x = aux
  where aux [] = False
        aux (y:ys) = case compare x y of
                       LT -> False
                       EQ -> True
                       GT -> aux ys
 
-- 6ª solución
-- ===========
 
indicesVerdaderos6 :: [Int] -> [Bool]
indicesVerdaderos6 xs = map (`member` xs) [0..]
 
-- Comprobación de equivalencia
-- ============================
 
-- ListaCreciente es un tipo de dato para generar lista de enteros
-- crecientes arbitrarias.
newtype ListaCreciente = LC [Int]
  deriving Show
 
-- listaCrecienteArbitraria es un generador de lista de enteros
-- crecientes arbitrarias. Por ejemplo,
--    λ> sample listaCrecienteArbitraria
--    LC []
--    LC [2,5]
--    LC [4,8]
--    LC [6,13]
--    LC [7,15,20,28,33]
--    LC [11,15,20,29,35,40]
--    LC [5,17,25,36,42,50,52,64]
--    LC [9,16,31,33,46,59,74,83,85,89,104,113,118]
--    LC [9,22,29,35,37,49,53,62,68,77,83,100]
--    LC []
--    LC [3,22,25,34,36,51,72,75,89]
listaCrecienteArbitraria :: Gen ListaCreciente
listaCrecienteArbitraria = do
  xs <- arbitrary
  return (LC (listaCreciente xs))
 
-- (listaCreciente xs) es la lista creciente correspondiente a xs. Por ejemplo,
--    listaCreciente [-1,3,-4,3,0]   ==  [2,6,11,15,16]
listaCreciente :: [Int] -> [Int]
listaCreciente xs =
  scanl1 (+) (map (succ . abs) xs)
 
-- ListaCreciente está contenida en Arbitrary
instance Arbitrary ListaCreciente where
  arbitrary = listaCrecienteArbitraria
 
-- La propiedad es
prop_indicesVerdaderos :: ListaCreciente -> Bool
prop_indicesVerdaderos (LC xs) =
  all (== take n (indicesVerdaderos1 xs))
      [take n (f xs) | f <-[indicesVerdaderos2,
                            indicesVerdaderos3,
                            indicesVerdaderos4,
                            indicesVerdaderos5,
                            indicesVerdaderos6]]
  where n = length xs
 
-- La comprobación es
--    λ> quickCheck prop_indicesVerdaderos
--    +++ OK, passed 100 tests.
 
-- Comparación de eficiencia
-- =========================
 
-- La comparación es
--    λ> last (take (2*10^4) (indicesVerdaderos1 [0,5..]))
--    False
--    (2.69 secs, 2,611,031,544 bytes)
--    λ> last (take (2*10^4) (indicesVerdaderos2 [0,5..]))
--    False
--    (0.03 secs, 10,228,880 bytes)
--
--    λ> last (take (4*10^6) (indicesVerdaderos2 [0,5..]))
--    False
--    (2.37 secs, 1,946,100,856 bytes)
--    λ> last (take (4*10^6) (indicesVerdaderos3 [0,5..]))
--    False
--    (1.54 secs, 1,434,100,984 bytes)
--
--    λ> last (take (6*10^6) (indicesVerdaderos3 [0,5..]))
--    False
--    (2.30 secs, 2,150,900,984 bytes)
--    λ> last (take (6*10^6) (indicesVerdaderos4 [0,5..]))
--    False
--    (1.55 secs, 1,651,701,184 bytes)
--    λ> last (take (6*10^6) (indicesVerdaderos5 [0,5..]))
--    False
--    (0.58 secs, 1,584,514,304 bytes)
--
--    λ> last (take (3*10^7) (indicesVerdaderos5 [0,5..]))
--    False
--    (2.74 secs, 7,920,514,360 bytes)
--    λ> last (take (3*10^7) (indicesVerdaderos6 [0,5..]))
--    False
--    (0.82 secs, 6,960,514,136 bytes)
 
--    λ> last (take (2*10^4) (indicesVerdaderos1 [0,5..]))
--    False
--    (2.69 secs, 2,611,031,544 bytes)
--    λ> last (take (2*10^4) (indicesVerdaderos6 [0,5..]))
--    False
--    (0.01 secs, 5,154,040 bytes)

El código se encuentra en [GitHub](https://github.com/jaalonso/Exercitium/blob/main/src/Indices_verdaderos.hs).

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Primero no consecutivo

Definir la función

   primeroNoConsecutivo :: (Eq a,Enum a) => [a] -> Maybe a

tal que (primeroNoConsecutivo xs) es el primer elemento de la lista xs que no es igual al siguiente de su elemento anterior en xs o Nothing si tal elemento no existe. Por ejemplo

   primeroNoConsecutivo [1,2,3,4,6,7,8] == Just 6
   primeroNoConsecutivo "bcdfg"         == Just 'f'
   primeroNoConsecutivo "bcdef"         == Nothing

Soluciones

import Data.Maybe (listToMaybe)
 
-- 1ª solución
primeroNoConsecutivo1 :: (Eq a, Enum a) => [a] -> Maybe a
primeroNoConsecutivo1 xs
  | null ys   = Nothing
  | otherwise = Just (head ys)
  where ys = [y | (z,y) <- zip xs (tail xs), y /= succ z]
 
-- 2ª solución
primeroNoConsecutivo2 :: (Eq a, Enum a) => [a] -> Maybe a
primeroNoConsecutivo2 xs = 
  listToMaybe [y | (z,y) <- zip xs (tail xs), y /= succ z]
 
-- 3ª solución
primeroNoConsecutivo3 :: (Eq a,Enum a) => [a] -> Maybe a
primeroNoConsecutivo3 (x:y:zs)
  | succ x /= y = Just y 
  | otherwise   = primeroNoConsecutivo3 (y:zs)
primeroNoConsecutivo3 _ = Nothing
 
-- 4ª solución
primeroNoConsecutivo :: (Eq a,Enum a) => [a] -> Maybe a
primeroNoConsecutivo [] = Nothing
primeroNoConsecutivo (x:ys) = aux x ys
  where aux _ [] = Nothing
        aux x' (z:zs) | z == succ x' = aux z zs
                      | otherwise    = Just z

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

“La única enseñanza que un profesor puede dar, en mi opinión, es la de pensar delante de sus alumnos.”

Henri Lebesgue.

Números altamente compuestos

Un número altamente compuesto es un entero positivo con más divisores que cualquier entero positivo más pequeño. Por ejemplo,

  • 4 es un número altamente compuesto porque es el menor con 3 divisores,
  • 5 no es altamente compuesto porque tiene menos divisores que 4 y
  • 6 es un número altamente compuesto porque es el menor con 4 divisores,

Los primeros números altamente compuestos son

   1, 2, 4, 6, 12, 24, 36, 48, 60, 120, 180, 240, 360, ...

Definir las funciones

   esAltamenteCompuesto       :: Int -> Bool
   altamenteCompuestos        :: [Int]
   graficaAltamenteCompuestos :: Int -> IO ()

tales que

  • (esAltamanteCompuesto x) se verifica si x es altamente compuesto. Por ejemplo,
     esAltamenteCompuesto 4      ==  True
     esAltamenteCompuesto 5      ==  False
     esAltamenteCompuesto 6      ==  True
     esAltamenteCompuesto 1260   ==  True
     esAltamenteCompuesto 2520   ==  True
     esAltamenteCompuesto 27720  ==  True
  • altamente compuestos es la sucesión de los números altamente compuestos. Por ejemplo,
     λ> take 20 altamenteCompuestos
     [1,2,4,6,12,24,36,48,60,120,180,240,360,720,840,1260,1680,2520,5040,7560]
  • (graficaAltamenteCompuestos n) dibuja la gráfica de los n primeros números altamente compuestos. Por ejemplo, (graficaAltamenteCompuestos 25) dibuja

Soluciones

import Data.List (group)
import Data.Numbers.Primes (primeFactors)
import Graphics.Gnuplot.Simple
 
-- 1ª definición de esAltamenteCompuesto
-- =====================================
 
esAltamenteCompuesto :: Int -> Bool
esAltamenteCompuesto x =
  and [nDivisores x > nDivisores y | y <- [1..x-1]]
 
-- (nDivisores x) es el número de divisores de x. Por ejemplo,
--    nDivisores 30  ==  8
nDivisores :: Int -> Int
nDivisores x = length (divisores x)
 
-- (divisores x) es la lista de los divisores de x. Por ejemplo,
--    divisores 30  ==  [1,2,3,5,6,10,15,30]
divisores :: Int -> [Int]
divisores x =
  [y | y <- [1..x]
     , x `mod` y == 0]
 
-- 2ª definición de esAltamenteCompuesto
-- =====================================
 
esAltamenteCompuesto2 :: Int -> Bool
esAltamenteCompuesto2 x =
  all (nDivisores2 x >) [nDivisores2 y | y <- [1..x-1]]
 
-- (nDivisores2 x) es el número de divisores de x. Por ejemplo,
--    nDivisores2 30  ==  8
nDivisores2 :: Int -> Int
nDivisores2 = succ . length . divisoresPropios
 
-- (divisoresPropios x) es la lista de los divisores de x menores que
-- x. Por ejemplo, 
--    divisoresPropios 30  ==  [1,2,3,5,6,10,15]
divisoresPropios :: Int -> [Int]
divisoresPropios x =
  [y | y <- [1..x `div` 2]
     , x `mod` y == 0]
 
-- 3ª definición de esAltamenteCompuesto
-- =====================================
 
esAltamenteCompuesto3 :: Int -> Bool
esAltamenteCompuesto3 x =
  all (nDivisores3 x >) [nDivisores3 y | y <- [1..x-1]]
 
-- (nDivisores3 x) es el número de divisores de x. Por ejemplo,
--    nDivisores3 30  ==  8
nDivisores3 :: Int -> Int
nDivisores3 x =
  product [1 + length xs | xs <- group (primeFactors x)]
 
-- 4ª definición de esAltamenteCompuesto
-- =====================================
 
esAltamenteCompuesto4 :: Int -> Bool
esAltamenteCompuesto4 x =
  x `pertenece` altamenteCompuestos2
 
-- 1ª definición de altamenteCompuestos 
-- ====================================
 
altamenteCompuestos :: [Int]
altamenteCompuestos =
  filter esAltamenteCompuesto4 [1..]
 
-- 2ª definición de altamenteCompuestos 
-- ====================================
 
altamenteCompuestos2 :: [Int]
altamenteCompuestos2 =
  1 : [y | ((x,n),(y,m)) <- zip sucMaxDivisores (tail sucMaxDivisores)
         , m > n]
 
-- sucMaxDivisores es la sucesión formada por los números enteros
-- positivos y el máximo número de divisores hasta cada número. Por
-- ejemplo,
--    λ> take 12 sucMaxDivisores
--    [(1,1),(2,2),(3,2),(4,3),(5,3),(6,4),(7,4),(8,4),(9,4),(10,4),(11,4),(12,6)]
sucMaxDivisores :: [(Int,Int)]
sucMaxDivisores =
  zip [1..] (scanl1 max (map nDivisores3 [1..]))
 
pertenece :: Int -> [Int] -> Bool
pertenece x ys =
  x == head (dropWhile (<x) ys)
 
-- Comparación de eficiencia de esAltamenteCompuesto
-- =================================================
 
--    λ> esAltamenteCompuesto 1260
--    True
--    (2.99 secs, 499,820,296 bytes)
--    λ> esAltamenteCompuesto2 1260
--    True
--    (0.51 secs, 83,902,744 bytes)
--    λ> esAltamenteCompuesto3 1260
--    True
--    (0.04 secs, 15,294,192 bytes)
--    λ> esAltamenteCompuesto4 1260
--    True
--    (0.04 secs, 15,594,392 bytes)
--    
--    λ> esAltamenteCompuesto2 2520
--    True
--    (2.10 secs, 332,940,168 bytes)
--    λ> esAltamenteCompuesto3 2520
--    True
--    (0.09 secs, 37,896,168 bytes)
--    λ> esAltamenteCompuesto4 2520
--    True
--    (0.06 secs, 23,087,456 bytes)
--
--    λ> esAltamenteCompuesto3 27720
--    True
--    (1.32 secs, 841,010,624 bytes)
--    λ> esAltamenteCompuesto4 27720
--    True
--    (1.33 secs, 810,870,384 bytes)
 
-- Comparación de eficiencia de altamenteCompuestos
-- ================================================
 
--    λ> altamenteCompuestos !! 25
--    45360
--    (2.84 secs, 1,612,045,976 bytes)
--    λ> altamenteCompuestos2 !! 25
--    45360
--    (0.01 secs, 102,176 bytes)
 
-- Definición de graficaAltamenteCompuestos
-- ========================================
 
graficaAltamenteCompuestos :: Int -> IO ()
graficaAltamenteCompuestos n =
  plotList [ Key Nothing
           , PNG ("Numeros_altamente_compuestos.png")
           ]
           (take n altamenteCompuestos2)

Pensamiento

Nuestras horas son minutos
cuando esperamos saber,
y siglos cuando sabemos
lo que se puede aprender.

Antonio Machado