Menu Close

Etiqueta: snd

Separación por posición

Definir la función

   particion :: [a] -> ([a],[a])

tal que (particion xs) es el par cuya primera componente son los elementos de xs en posiciones pares y su segunda componente son los restantes elementos. Por ejemplo,

   particion [3,5,6,2]    ==  ([3,6],[5,2])
   particion [3,5,6,2,7]  ==  ([3,6,7],[5,2])
   particion "particion"  ==  ("priin","atco")

Soluciones

module Separacion_por_posicion where
 
import Data.List (partition)
import qualified Data.Vector as V ((!), fromList, length)
import Test.QuickCheck (quickCheck)
 
-- 1ª solución
-- ===========
 
particion1 :: [a] -> ([a],[a])
particion1 xs = ([x | (n,x) <- nxs, even n],
                 [x | (n,x) <- nxs, odd n])
  where nxs = enumeracion xs
 
--(numeracion xs) es la enumeración de xs. Por ejemplo,
--    enumeracion [7,9,6,8]  ==  [(0,7),(1,9),(2,6),(3,8)]
enumeracion :: [a] -> [(Int,a)]
enumeracion = zip [0..]
 
-- 2ª solución
-- ===========
 
particion2 :: [a] -> ([a],[a])
particion2 []     = ([],[])
particion2 (x:xs) = (x:zs,ys)
  where (ys,zs) = particion2 xs
 
-- 3ª solución
-- ===========
 
particion3 :: [a] -> ([a],[a])
particion3 = foldr f ([],[])
  where f x (ys,zs) = (x:zs,ys)
 
-- 4ª solución
-- ===========
 
particion4 :: [a] -> ([a],[a])
particion4 = foldr (\x (ys,zs) -> (x:zs,ys)) ([],[])
 
-- 5ª solución
-- ===========
 
particion5 :: [a] -> ([a],[a])
particion5 xs =
  ([xs!!k | k <- [0,2..n]],
   [xs!!k | k <- [1,3..n]])
  where n = length xs - 1
 
-- 6ª solución
-- ===========
 
particion6 :: [a] -> ([a],[a])
particion6 xs = (pares xs, impares xs)
 
-- (pares xs) es la lista de los elementos de xs en posiciones
-- pares. Por ejemplo,
--    pares [3,5,6,2]  ==  [3,6]
pares :: [a] -> [a]
pares []     = []
pares (x:xs) = x : impares xs
 
-- (impares xs) es la lista de los elementos de xs en posiciones
-- impares. Por ejemplo,
--    impares [3,5,6,2]  ==  [5,2]
impares :: [a] -> [a]
impares []     = []
impares (_:xs) = pares xs
 
-- 7ª solución
-- ===========
 
particion7 :: [a] -> ([a],[a])
particion7 [] = ([],[])
particion7 xs =
  ([v V.! k | k <- [0,2..n-1]],
   [v V.! k | k <- [1,3..n-1]])
  where v = V.fromList xs
        n = V.length v
 
-- 8ª solución
-- ===========
 
particion8 :: [a] -> ([a],[a])
particion8 xs =
  (map snd ys, map snd zs)
  where (ys,zs) = partition posicionPar (zip [0..] xs)
 
posicionPar :: (Int,a) -> Bool
posicionPar = even . fst
 
-- Comprobación de equivalencia
-- ============================
 
-- La propiedad es
prop_particion :: [Int] -> Bool
prop_particion xs =
  all (== particion1 xs)
      [particion2 xs,
       particion3 xs,
       particion4 xs,
       particion5 xs,
       particion6 xs,
       particion7 xs,
       particion8 xs]
 
-- La comprobación es
--    λ> quickCheck prop_particion
--    +++ OK, passed 100 tests.
 
-- Comparación de eficiencia
-- =========================
 
-- La comparación es
--    λ> last (snd (particion1 [1..6*10^6]))
--    6000000
--    (2.74 secs, 2,184,516,080 bytes)
--    λ> last (snd (particion2 [1..6*10^6]))
--    6000000
--    (2.02 secs, 1,992,515,880 bytes)
--    λ> last (snd (particion3 [1..6*10^6]))
--    6000000
--    (3.17 secs, 1,767,423,240 bytes)
--    λ> last (snd (particion4 [1..6*10^6]))
--    6000000
--    (3.23 secs, 1,767,423,240 bytes)
--    λ> last (snd (particion5 [1..6*10^6]))
--    6000000
--    (1.62 secs, 1,032,516,192 bytes)
--    λ> last (snd (particion5 [1..6*10^6]))
--    6000000
--    (1.33 secs, 1,032,516,192 bytes)
--    λ> last (snd (particion6 [1..6*10^6]))
--    6000000
--    (1.80 secs, 888,515,960 bytes)
--    λ> last (snd (particion7 [1..6*10^6]))
--    6000000
--    (1.29 secs, 1,166,865,672 bytes)
--    λ> last (snd (particion8 [1..6*10^6]))
--    6000000
--    (0.87 secs, 3,384,516,616 bytes)
--
--    λ> last (snd (particion5 [1..10^7]))
--    10000000
--    (1.94 secs, 1,720,516,872 bytes)
--    λ> last (snd (particion7 [1..10^7]))
--    10000000
--    (2.54 secs, 1,989,215,176 bytes)
--    λ> last (snd (particion8 [1..10^7]))
--    10000000
--    (1.33 secs, 5,640,516,960 bytes)

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Código de las alergias

Para la determinación de las alergia se utiliza los siguientes códigos para los alérgenos:

   Huevos ........   1
   Cacahuetes ....   2
   Mariscos ......   4
   Fresas ........   8
   Tomates .......  16
   Chocolate .....  32
   Polen .........  64
   Gatos ......... 128

Así, si Juan es alérgico a los cacahuetes y al chocolate, su puntuación es 34 (es decir, 2+32).

Los alérgenos se representan mediante el siguiente tipo de dato

  data Alergeno = Huevos
                | Cacahuetes
                | Mariscos
                | Fresas
                | Tomates
                | Chocolate
                | Polen
                | Gatos
    deriving (Enum, Eq, Show, Bounded)

Definir la función

   alergias :: Int -> [Alergeno]

tal que (alergias n) es la lista de alergias correspondiente a una puntuación n. Por ejemplo,

   λ> alergias 1
   [Huevos]
   λ> alergias 2
   [Cacahuetes]
   λ> alergias 3
   [Huevos,Cacahuetes]
   λ> alergias 5
   [Huevos,Mariscos]
   λ> alergias 255
   [Huevos,Cacahuetes,Mariscos,Fresas,Tomates,Chocolate,Polen,Gatos]

Soluciones

import Data.List (subsequences)
import Test.QuickCheck
 
data Alergeno =
    Huevos
  | Cacahuetes
  | Mariscos
  | Fresas
  | Tomates
  | Chocolate
  | Polen
  | Gatos
  deriving (Enum, Eq, Show, Bounded)
 
-- 1ª solución
-- ===========
 
alergias1 :: Int -> [Alergeno]
alergias1 n =
  [a | (a,c) <- zip alergenos codigos, c `elem` descomposicion n]
 
-- codigos es la lista de los códigos de los alergenos.
codigos :: [Int]
codigos = [2^x| x <- [0..7]]
 
-- (descomposicion n) es la descomposición de n como sumas de potencias
-- de 2. Por ejemplo,
--    descomposicion 3    ==  [1,2]
--    descomposicion 5    ==  [1,4]
--    descomposicion 248  ==  [8,16,32,64,128]
--    descomposicion 255  ==  [1,2,4,8,16,32,64,128]
descomposicion :: Int -> [Int]
descomposicion n =
  head [xs | xs <- subsequences codigos, sum xs == n]
 
-- 2ª solución
-- ===========
 
alergias2 :: Int -> [Alergeno]
alergias2 = map toEnum . codigosAlergias
 
-- (codigosAlergias n) es la lista de códigos de alergias
-- correspondiente a una puntuación n. Por ejemplo,
--    codigosAlergias 1  ==  [0]
--    codigosAlergias 2  ==  [1]
--    codigosAlergias 3  ==  [0,1]
--    codigosAlergias 4  ==  [2]
--    codigosAlergias 5  ==  [0,2]
--    codigosAlergias 6  ==  [1,2]
codigosAlergias :: Int -> [Int]
codigosAlergias = aux [0..7]
  where aux []     _             = []
        aux (x:xs) n | odd n     = x : aux xs (n `div` 2)
                     | otherwise = aux xs (n `div` 2)
 
-- 3ª solución
-- ===========
 
alergias3 :: Int -> [Alergeno]
alergias3 = map toEnum . codigosAlergias3
 
codigosAlergias3 :: Int -> [Int]
codigosAlergias3 n =
  [x | (x,y) <- zip [0..7] (int2bin n), y == 1]
 
-- (int2bin n) es la representación binaria del número n. Por ejemplo,
--    int2bin 10  ==  [0,1,0,1]
-- ya que 10 = 0*1 + 1*2 + 0*4 + 1*8
int2bin :: Int -> [Int]
int2bin n | n < 2     = [n]
          | otherwise = n `rem` 2 : int2bin (n `div` 2)
 
-- 4ª solución
-- ===========
 
alergias4 :: Int -> [Alergeno]
alergias4 = map toEnum . codigosAlergias4
 
codigosAlergias4 :: Int -> [Int]
codigosAlergias4 n =
  map fst (filter ((== 1) . snd) (zip  [0..7] (int2bin n)))
 
-- 5ª solución
-- ===========
 
alergias5 :: Int -> [Alergeno]
alergias5 = map (toEnum . fst)
          . filter ((1 ==) . snd)
          . zip [0..7]
          . int2bin
 
-- 6ª solución
-- ===========
 
alergias6 :: Int -> [Alergeno]
alergias6 = aux alergenos
  where aux []     _             = []
        aux (x:xs) n | odd n     = x : aux xs (n `div` 2)
                     | otherwise = aux xs (n `div` 2)
 
-- alergenos es la lista de los alergenos. Por ejemplo.
--    take 3 alergenos  ==  [Huevos,Cacahuetes,Mariscos]
alergenos :: [Alergeno]
alergenos = [minBound..maxBound]
 
-- Comprobación de equivalencia
-- ============================
 
-- La propiedad es
prop_alergias :: Property
prop_alergias =
  forAll (arbitrary `suchThat` esValido) $ \n ->
  all (== alergias1 n)
      [alergias2 n,
       alergias3 n,
       alergias4 n,
       alergias5 n,
       alergias6 n]
  where esValido x = 1 <= x && x <= 255
 
-- La comprobación es
--    λ> quickCheck prop_alergias
--    +++ OK, passed 100 tests.
 
-- Comparación de eficiencia
-- =========================
 
-- La comparación es
--    λ> last (map alergias1 [1..255])
--    [Huevos,Cacahuetes,Mariscos,Fresas,Tomates,Chocolate,Polen,Gatos]
--    (0.02 secs, 1,657,912 bytes)
--    λ> last (map alergias2 [1..255])
--    [Huevos,Cacahuetes,Mariscos,Fresas,Tomates,Chocolate,Polen,Gatos]
--    (0.01 secs, 597,080 bytes)
--    λ> last (map alergias3 [1..255])
--    [Huevos,Cacahuetes,Mariscos,Fresas,Tomates,Chocolate,Polen,Gatos]
--    (0.01 secs, 597,640 bytes)
--    λ> last (map alergias4 [1..255])
--    [Huevos,Cacahuetes,Mariscos,Fresas,Tomates,Chocolate,Polen,Gatos]
--    (0.01 secs, 598,152 bytes)
--    λ> last (map alergias5 [1..255])
--    [Huevos,Cacahuetes,Mariscos,Fresas,Tomates,Chocolate,Polen,Gatos]
--    (0.01 secs, 596,888 bytes)

El código se encuentra en [GitHub](https://github.com/jaalonso/Exercitium/blob/main/src/Alergias.hs).

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Caminos en un grafo

Definir las funciones

   grafo   :: [(Int,Int)] -> Grafo Int Int
   caminos :: Grafo Int Int -> Int -> Int -> [[Int]]

tales que

  • (grafo as) es el grafo no dirigido definido cuyas aristas son as. Por ejemplo,
     ghci> grafo [(2,4),(4,5)]
     G ND (array (2,5) [(2,[(4,0)]),(3,[]),(4,[(2,0),(5,0)]),(5,[(4,0)])])
  • (caminos g a b) es la lista los caminos en el grafo g desde a hasta b sin pasar dos veces por el mismo nodo. Por ejemplo,
     ghci> sort (caminos (grafo [(1,3),(2,5),(3,5),(3,7),(5,7)]) 1 7)
     [[1,3,5,7],[1,3,7]]
     ghci> sort (caminos (grafo [(1,3),(2,5),(3,5),(3,7),(5,7)]) 2 7)
     [[2,5,3,7],[2,5,7]]
     ghci> sort (caminos (grafo [(1,3),(2,5),(3,5),(3,7),(5,7)]) 1 2)
     [[1,3,5,2],[1,3,7,5,2]]
     ghci> caminos (grafo [(1,3),(2,5),(3,5),(3,7),(5,7)]) 1 4
     []
     ghci> length (caminos (grafo [(i,j) | i <- [1..10], j <- [i..10]]) 1 10)
     109601

Soluciones

import Data.List (sort)
import I1M.Grafo
import I1M.BusquedaEnEspaciosDeEstados
 
grafo :: [(Int,Int)] -> Grafo Int Int
grafo as = creaGrafo ND (m,n) [(x,y,0) | (x,y) <- as]
  where ns = map fst as ++ map snd as
        m  = minimum ns
        n  = maximum ns
 
-- 1ª solución
-- ===========
 
caminos :: Grafo Int Int -> Int -> Int -> [[Int]]
caminos g a b = aux [[b]] where 
  aux [] = []
  aux ((x:xs):yss)
    | x == a    = (x:xs) : aux yss
    | otherwise = aux ([z:x:xs | z <- adyacentes g x
                               , z `notElem` (x:xs)] 
                       ++ yss) 
 
-- 2ª solución (mediante espacio de estados)
-- =========================================
 
caminos2 :: Grafo Int Int -> Int -> Int -> [[Int]]
caminos2 g a b = buscaEE sucesores esFinal inicial
  where inicial          = [b]
        sucesores (x:xs) = [z:x:xs | z <- adyacentes g x
                                   , z `notElem` (x:xs)] 
        esFinal (x:xs)   = x == a
 
-- Comparación de eficiencia
-- =========================
 
--    ghci> length (caminos (grafo [(i,j) | i <- [1..10], j <- [i..10]]) 1 10)
--    109601
--    (3.57 secs, 500533816 bytes)
--    ghci> length (caminos2 (grafo [(i,j) | i <- [1..10], j <- [i..10]]) 1 10)
--    109601
--    (3.53 secs, 470814096 bytes)

Reparto de escaños por la ley d’Hont

El sistema D’Hondt es una fórmula creada por Victor d’Hondt, que permite obtener el número de cargos electos asignados a las candidaturas, en proporción a los votos conseguidos.

Tras el recuento de los votos, se calcula una serie de divisores para cada partido. La fórmula de los divisores es V/N, donde V representa el número total de votos recibidos por el partido, y N representa cada uno de los números enteros desde 1 hasta el número de cargos electos de la circunscripción objeto de escrutinio. Una vez realizadas las divisiones de los votos de cada partido por cada uno de los divisores desde 1 hasta N, la asignación de cargos electos se hace ordenando los cocientes de las divisiones de mayor a menor y asignando a cada uno un escaño hasta que éstos se agoten

Definir la función

   reparto :: Int -> [Int] -> [(Int,Int)]

tal que (reparto n vs) es la lista de los pares formados por los números de los partidos y el número de escaño que les corresponden al repartir n escaños en función de la lista de sus votos. Por ejemplo,

   ghci> reparto 7 [340000,280000,160000,60000,15000]
   [(1,3),(2,3),(3,1)]
   ghci> reparto 21 [391000,311000,184000,73000,27000,12000,2000]
   [(1,9),(2,7),(3,4),(4,1)]

es decir, en el primer ejemplo,

  • al 1º partido (que obtuvo 340000 votos) le corresponden 3 escaños,
  • al 2º partido (que obtuvo 280000 votos) le corresponden 3 escaños,
  • al 3º partido (que obtuvo 160000 votos) le corresponden 1 escaño.

Soluciones

import Data.List (sort, group)
 
-- Para los ejemplos que siguen, se usará la siguiente ditribución de
-- votos entre 5 partidos.
ejVotos :: [Int]
ejVotos = [340000,280000,160000,60000,15000]
 
-- 1ª solución
-- ===========
 
reparto :: Int -> [Int] -> [(Int,Int)]
reparto n vs = 
  [(x,1 + length xs) | (x:xs) <- group (sort (repartoAux n vs))] 
 
-- (repartoAux n vs) es el número de los partidos, cuyos votos son vs, que
-- obtienen los n escaños. Por ejemplo,
--    ghci> repartoAux 7 ejVotos
--    [1,2,1,3,2,1,2]
repartoAux :: Int -> [Int] -> [Int]
repartoAux n vs = map snd (repartoAux' n vs)
 
-- (repartoAux' n vs) es la lista formada por los n restos mayores
-- correspondientes a la lista de votos vs. Por ejemplo,
--    ghci> repartoAux' 7 ejVotos
--    [(340000,1),(280000,2),(170000,1),(160000,3),(140000,2),(113333,1),
--     (93333,2)]
repartoAux' :: Int -> [Int] -> [(Int,Int)]
repartoAux' n vs = 
  take n (reverse (sort (concatMap (restos n) (votosPartidos vs))))
 
-- (votosPartidos vs) es la lista con los pares formados por los votos y
-- el número de cada partido. Por ejemplo, 
--    ghci> votosPartidos ejVotos
--    [(340000,1),(280000,2),(160000,3),(60000,4),(15000,5)]
votosPartidos :: [Int] -> [(Int,Int)]
votosPartidos vs = zip vs [1..]
 
-- (restos n (x,i)) es la lista obtenidas dividiendo n entre 1, 2,..., n.
-- Por ejemplo, 
--    ghci> restos 5 (340000,1)
--    [(340000,1),(170000,1),(113333,1),(85000,1),(68000,1)]
restos :: Int -> (Int,Int) -> [(Int,Int)]
restos n (x,i) = [(x `div` k,i) | k <- [1..n]]
 
-- 2ª solución
-- ===========
 
reparto2 :: Int -> [Int] -> [(Int,Int)]
reparto2 n xs = 
  ( map (\x -> (head x, length x))  
  . group  
  . sort  
  . map snd  
  . take n  
  . reverse  
  . sort
  ) [(x `div` i, p) | (x,p) <- zip xs [1..], i <- [1..n]]

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Teorema de la amistad

El teorema de la amistad afirma que

En cualquier reunión de n personas hay al menos dos personas que tienen el mismo número de amigos (suponiendo que la relación de amistad es simétrica).

Se pueden usar las siguientes representaciones:

  • números enteros para representar a las personas,
  • pares de enteros (x,y), con x < y, para representar que la persona x e y son amigas y
  • lista de pares de enteros para representar la reunión junto con las relaciones de amistad.

Por ejemplo, [(2,3),(3,5)] representa una reunión de tres personas
(2, 3 y 5) donde

  • 2 es amiga de 3,
  • 3 es amiga de 2 y 5 y
  • 5 es amiga de 3.
    Si clasificamos las personas poniendo en la misma clase las que tienen el mismo número de amigos, se obtiene [[2,5],[3]] ya que 2 y 5 tienen 1 amigo y 3 tiene 2 amigos.

Definir la función

   clasesAmigos :: [(Int,Int)] -> [[Int]]

tal que (clasesAmigos r) es la clasificación según el número de amigos de las personas de la reunión r; es decir, la lista cuyos elementos son las listas de personas con 1 amigo, con 2 amigos y así hasta que se completa todas las personas de la reunión r. Por ejemplo,

   clasesAmigos [(2,3),(3,5)]            ==  [[2,5],[3]]
   clasesAmigos [(2,3),(4,5)]            ==  [[2,3,4,5]]
   clasesAmigos [(2,3),(2,5),(3,5)]      ==  [[2,3,5]]
   clasesAmigos [(2,3),(3,4),(2,5)]      ==  [[4,5],[2,3]]
   clasesAmigos [(x,x+1) | x <- [1..5]]  ==  [[1,6],[2,3,4,5]]
   length (clasesAmigos [(x,x+1) | x <- [1..2020]]) == 2

Comprobar con QuickCheck el teorema de la amistad; es decir, si r es una lista de pares de enteros, entonces (clasesAmigos r’) donde r’ es la lista de los pares (x,y) de r con x < y y se supone que r’ es no vacía.

Soluciones

import Data.List (nub, sort)
import Test.QuickCheck
 
-- 1ª solución
-- ===========
 
clasesAmigos :: [(Int,Int)] -> [[Int]]
clasesAmigos ps =
  filter (not . null)
         [[x | x <- xs, numeroDeAmigos ps x == n] | n <- [1..length xs]] 
  where xs = personas ps
 
-- (personas ps) es la lista de personas en la reunión ps. Por ejemplo,
--    personas [(2,3),(3,5)]  ==  [2,3,5]
personas :: [(Int,Int)] -> [Int]
personas ps = sort (nub (map fst ps ++ map snd ps))
 
-- (numeroDeAmigos ps x) es el número de amigos de x en la reunión
-- ps. Por ejemplo, 
--    numeroDeAmigos [(2,3),(3,5)] 2  ==  1
--    numeroDeAmigos [(2,3),(3,5)] 3  ==  2
--    numeroDeAmigos [(2,3),(3,5)] 5  ==  1
numeroDeAmigos :: [(Int,Int)] -> Int -> Int
numeroDeAmigos ps x = length (amigos ps x)
 
-- (amigos ps x) es la lista de los amigos de x en la reunión ps. Por
-- ejemplo, 
--    amigos [(2,3),(3,5)] 2  ==  [3]
--    amigos [(2,3),(3,5)] 3  ==  [5,2]
--    amigos [(2,3),(3,5)] 5  ==  [3]
amigos :: [(Int,Int)] -> Int -> [Int]
amigos ps x =
  nub ([b | (a,b) <- ps, a == x] ++ [a | (a,b) <- ps, b == x])
 
-- 2ª solución
-- ===========
 
clasesAmigos2 :: [(Int,Int)] -> [[Int]]
clasesAmigos2 = clases . sort . tablaAmigos
  where
    clases [] = []
    clases ps@((x,y):ps') = (map snd (takeWhile (\(a,b) -> a == x) ps)) :
                            clases (dropWhile (\(a,b) -> a == x) ps')
 
-- (tablaAmigos ps) es la lista de pares (a,b) tales que b es una
-- persona de la reunión ps y a es su número de amigos. Por ejemplo,
--    tablaAmigos [(2,3),(3,5)]   ==  [(1,2),(2,3),(1,5)]
tablaAmigos :: [(Int,Int)] -> [(Int,Int)]
tablaAmigos ps = [(numeroDeAmigos ps x,x) | x <- personas ps]
 
-- Equivalencia de las definiciones
-- ================================
 
-- La propiedad es
prop_equivalencia :: [(Int,Int)] -> Property
prop_equivalencia ps =
  not (null ps')
  ==> 
  clasesAmigos ps' == clasesAmigos2 ps'
  where ps' = [(x,y) | (x,y) <- ps, x < y]
 
-- La comprobación es
--    λ> quickCheck prop_equivalencia
--    +++ OK, passed 100 tests.
--    (1.06 secs, 337,106,752 bytes)
 
-- Comparación de eficiencia
-- =========================
 
--    λ> length (clasesAmigos [(x,x+1) | x <- [1..200]]) 
--    2
--    (2.37 secs, 804,402,848 bytes)
--    λ> length (clasesAmigos2 [(x,x+1) | x <- [1..200]]) 
--    2
--    (0.02 secs, 4,287,256 bytes)
 
-- El teorema de la amistad
-- ========================
 
-- La propiedad es
teoremaDeLaAmistad :: [(Int,Int)] -> Property
teoremaDeLaAmistad ps =
  not (null ps')
  ==> 
  not (null [xs | xs <- clasesAmigos2 ps', length xs > 1])
  where ps' = [(x,y) | (x,y) <- ps, x < y]
 
-- La comprobación es
--    λ> quickCheck teoremaDeLaAmistad
--    +++ OK, passed 100 tests.

Referencia

Pensamiento

Me dijo el agua clara que reía,
bajo el sol, sobre el mármol de la fuente:
si te inquieta el enigma del presente
aprende el son de la salmodia mía.

Antonio Machado