Menu Close

Etiqueta: map

Clausura de un conjunto respecto de una función

Un conjunto A está cerrado respecto de una función f si para elemento x de A se tiene que f(x) pertenece a A. La clausura de un conjunto B respecto de una función f es el menor conjunto A que contiene a B y es cerrado respecto de f. Por ejemplo, la clausura de {0,1,2] respecto del opuesto es {-2,-1,0,1,2}.

Definir la función

   clausura :: Ord a => (a -> a) -> [a] -> [a]

tal que (clausura f xs) es la clausura de xs respecto de f. Por ejemplo,

   clausura (\x -> -x) [0,1,2]         ==  [-2,-1,0,1,2]
   clausura (\x -> (x+1) `mod` 5) [0]  ==  [0,1,2,3,4]
   length (clausura (\x -> (x+1) `mod` (10^6)) [0]) == 1000000

Soluciones

module Clausura where
 
import Data.List ((\\), nub, sort, union)
import Test.QuickCheck.HigherOrder (quickCheck')
import qualified Data.Set as S (Set, difference, fromList, map, null, toList, union)
 
-- 1ª solución
-- ===========
 
clausura1 :: Ord a => (a -> a) -> [a] -> [a]
clausura1 f xs
  | esCerrado f xs = sort xs
  | otherwise      = clausura1 f (expansion f xs)
 
-- (esCerrado f xs) se verifica si al aplicar f a cualquier elemento de
-- xs se obtiene un elemento de xs. Por ejemplo,
--    λ> esCerrado (\x -> -x) [0,1,2]
--    False
--    λ> esCerrado (\x -> -x) [0,1,2,-2,-1]
--    True
esCerrado :: Ord a => (a -> a) -> [a] -> Bool
esCerrado f xs = all (`elem` xs) (map f xs)
 
-- (expansion f xs) es la lista (sin repeticiones) obtenidas añadiéndole
-- a xs el resulta de aplicar f a sus elementos. Por ejemplo,
--    expansion (\x -> -x) [0,1,2]  ==  [0,1,2,-1,-2]
expansion :: Ord a => (a -> a) -> [a] -> [a]
expansion f xs = xs `union` map f xs
 
-- 2ª solución
-- ===========
 
clausura2 :: Ord a => (a -> a) -> [a] -> [a]
clausura2 f xs = sort (until (esCerrado f) (expansion f) xs)
 
-- 3ª solución
-- ===========
 
clausura3 :: Ord a => (a -> a) -> [a] -> [a]
clausura3 f xs = aux xs xs
  where aux ys vs | null ns   = sort vs
                  | otherwise = aux ns (vs ++ ns)
          where ns = nub (map f ys) \\ vs
 
-- 4ª solución
-- ===========
 
clausura4 :: Ord a => (a -> a) -> [a] -> [a]
clausura4 f xs = S.toList (clausura4' f (S.fromList xs))
 
clausura4' :: Ord a => (a -> a) -> S.Set a -> S.Set a
clausura4' f xs = aux xs xs
  where aux ys vs | S.null ns = vs
                  | otherwise = aux ns (vs `S.union` ns)
          where ns = S.map f ys `S.difference` vs
 
-- Comprobación de equivalencia
-- ============================
 
-- La propiedad es
prop_clausura :: (Int -> Int) -> [Int] -> Bool
prop_clausura f xs =
  all (== clausura1 f xs')
      [ clausura2 f xs'
      , clausura3 f xs'
      , clausura4 f xs'
      ]
  where xs' = sort (nub xs)
 
-- La comprobación es
--    λ> quickCheck' prop_clausura
--    +++ OK, passed 100 tests.
 
-- Comparación de eficiencia
-- =========================
 
-- La comparación es
--    λ> length (clausura1 (\x -> (x+1) `mod` 800) [0])
--    800
--    (1.95 secs, 213,481,560 bytes)
--    λ> length (clausura2 (\x -> (x+1) `mod` 800) [0])
--    800
--    (1.96 secs, 213,372,824 bytes)
--    λ> length (clausura3 (\x -> (x+1) `mod` 800) [0])
--    800
--    (0.03 secs, 42,055,128 bytes)
--    λ> length (clausura4 (\x -> (x+1) `mod` 800) [0])
--    800
--    (0.01 secs, 1,779,768 bytes)
--
--    λ> length (clausura3 (\x -> (x+1) `mod` (10^4)) [0])
--    10000
--    (2.50 secs, 8,080,105,816 bytes)
--    λ> length (clausura4 (\x -> (x+1) `mod` (10^4)) [0])
--    10000
--    (0.05 secs, 27,186,920 bytes)

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

El problema de las celebridades

La celebridad de una reunión es una persona al que todos conocen pero que no conoce a nadie. Por ejemplo, si en la reunión hay tres personas tales que la 1 conoce a la 3 y la 2 conoce a la 1 y a la 3, entonces la celebridad de la reunión es la 3.

La relación de conocimiento se puede representar mediante una lista de pares (x,y) indicando que x conoce a y. Por ejemplo, la reunión anterior se puede representar por [(1,3),(2,1),(2,3)].

Definir la función

   celebridad :: Ord a => [(a,a)] -> Maybe a

tal que (celebridad r) es el justo la celebridad de r, si en r hay una celebridad y Nothing, en caso contrario. Por ejemplo,

   celebridad [(1,3),(2,1),(2,3)]            ==  Just 3
   celebridad [(1,3),(2,1),(3,2)]            ==  Nothing
   celebridad [(1,3),(2,1),(2,3),(3,1)]      ==  Nothing
   celebridad [(x,1) | x <- [2..10^6]]       ==  Just 1
   celebridad [(x,10^6) | x <- [1..10^6-1]]  ==  Just 1000000

Soluciones

import Data.List (delete, nub)
import Data.Maybe (listToMaybe)
import qualified Data.Set as S
 
-- 1ª solución
-- ===========
 
celebridad1 :: Ord a => [(a,a)] -> Maybe a
celebridad1 r =
  listToMaybe [x | x <- personas r, esCelebridad r x]
 
personas :: Ord a => [(a,a)] -> [a]
personas r =
  nub (map fst r ++ map snd r)
 
esCelebridad :: Ord a => [(a,a)] -> a -> Bool
esCelebridad r x =
     [y | y <- ys, (y,x) `elem` r] == ys
  && null [y | y <- ys, (x,y) `elem` r]
  where ys = delete x (personas r)
 
-- 2ª solución
-- ===========
 
celebridad2 :: Ord a => [(a,a)] -> Maybe a
celebridad2 r =
  listToMaybe [x | x <- personas2 c, esCelebridad2 c x]
  where c = S.fromList r
 
--    λ> personas2 (S.fromList [(1,3),(2,1),(2,3)])
--    [1,2,3]
personas2 :: Ord a => S.Set (a,a) -> [a]
personas2 c =
  S.toList (S.map fst c `S.union` S.map snd c)
 
esCelebridad2 :: Ord a => S.Set (a,a) -> a -> Bool
esCelebridad2 c x = 
      [y | y <- ys, (y,x) `S.member` c] == ys
   && null [y | y <- ys, (x,y) `S.member` c]
   where ys = delete x (personas2 c)
 
-- 3ª definición
-- =============
 
celebridad3 :: Ord a => [(a,a)] -> Maybe a
celebridad3 r
  | S.null candidatos = Nothing
  | esCelebridad      = Just candidato
  | otherwise         = Nothing
  where
    conjunto          = S.fromList r
    dominio           = S.map fst conjunto
    rango             = S.map snd conjunto
    total             = dominio `S.union` rango
    candidatos        = rango `S.difference` dominio
    candidato         = S.findMin candidatos
    noCandidatos      = S.delete candidato total
    esCelebridad      =
      S.filter (\x -> (x,candidato) `S.member` conjunto) total == noCandidatos
 
-- Comparación de eficiencia
-- =========================
 
--    λ> celebridad1 [(x,1) | x <- [2..300]]
--    Just 1
--    (2.70 secs, 38,763,888 bytes)
--    λ> celebridad2 [(x,1) | x <- [2..300]]
--    Just 1
--    (0.01 secs, 0 bytes)
-- 
--    λ> celebridad2 [(x,1000) | x <- [1..999]]
--    Just 1000
--    (2.23 secs, 483,704,224 bytes)
--    λ> celebridad3 [(x,1000) | x <- [1..999]]
--    Just 1000
--    (0.02 secs, 0 bytes)
-- 
--    λ> celebridad3 [(x,10^6) | x <- [1..10^6-1]]
--    Just 1000000
--    (9.56 secs, 1,572,841,088 bytes)
--    λ> celebridad3 [(x,1) | x <- [2..10^6]]
--    Just 1
--    (6.17 secs, 696,513,320 bytes)

Sumas de subconjuntos

Definir la función

   sumasSubconjuntos :: Set Int -> Set Int

tal que (sumasSubconjuntos xs) es el conjunto de las sumas de cada uno de los subconjuntos de xs. Por ejemplo,

   λ> sumasSubconjuntos (fromList [3,2,5])
   fromList [0,2,3,5,7,8,10]
   λ> length (sumasSubconjuntos (fromList [-40,-39..40]))
   1641

Soluciones

import Data.List
import Data.Set ( Set
                , deleteFindMin
                , fromList
                , singleton
                , toList
                )
import qualified Data.Set as S
 
-- 1ª definición
-- =============
 
sumasSubconjuntos :: Set Int -> Set Int
sumasSubconjuntos xs =
  fromList (map sum (subsequences (toList xs))) 
 
-- 2ª definición
-- =============
 
sumasSubconjuntos2 :: Set Int -> Set Int
sumasSubconjuntos2 =
  fromList . sumasSubconjuntosL . toList  
 
sumasSubconjuntosL :: [Int] -> [Int]
sumasSubconjuntosL []     = [0]
sumasSubconjuntosL (x:xs) = ys `union` map (+x) ys
  where ys = sumasSubconjuntosL xs
 
-- 3ª solución
-- ===========
 
sumasSubconjuntos3 :: Set Int -> Set Int
sumasSubconjuntos3 xs
  | S.null xs = singleton 0
  | otherwise = zs `S.union` (S.map (+y) zs)
  where (y,ys) = deleteFindMin xs
        zs     = sumasSubconjuntos2 ys
 
-- Comparación de eficiencia
-- =========================
 
--    λ> length (sumasSubconjuntos (fromList [1..22]))
--    254
--    (4.17 secs, 4,574,495,128 bytes)
--    λ> length (sumasSubconjuntos2 (fromList [1..22]))
--    254
--    (0.03 secs, 5,583,200 bytes)
--    λ> length (sumasSubconjuntos3 (fromList [1..22]))
--    254
--    (0.03 secs, 5,461,064 bytes)
--
--    λ> length (sumasSubconjuntos2 (fromList [1..60]))
--    1831
--    (2.75 secs, 611,912,128 bytes)
--    λ> length (sumasSubconjuntos3 (fromList [1..60]))
--    1831
--    (2.81 secs, 610,476,992 bytes)

El problema de las celebridades

La celebridad de una reunión es una persona al que todos conocen pero que no conoce a nadie. Por ejemplo, si en la reunión hay tres personas tales que la 1 conoce a la 3 y la 2 conoce a la 1 y a la 3, entonces la celebridad de la reunión es la 3.

La relación de conocimiento se puede representar mediante una lista de pares (x,y) indicando que x conoce a y. Por ejemplo, ka reunioń anterior se puede representar por [(1,3),(2,1),(2,3)].

Definir la función

   celebridad :: Ord a => [(a,a)] -> Maybe a

tal que (celebridad r) es el justo la celebridad de r, si en r hay una celebridad y Nothing, en caso contrario. Por ejemplo,

   celebridad [(1,3),(2,1),(2,3)]            ==  Just 3
   celebridad [(1,3),(2,1),(3,2)]            ==  Nothing
   celebridad [(1,3),(2,1),(2,3),(3,1)]      ==  Nothing
   celebridad [(x,1) | x < - [2..10^6]]       ==  Just 1
   celebridad [(x,10^6) | x <- [1..10^6-1]]  ==  Just 1000000

Soluciones

[schedule expon=’2017-05-16′ expat=»06:00″]

  • Las soluciones se pueden escribir en los comentarios hasta el 16 de mayo.
  • El código se debe escribir entre una línea con <pre lang=»haskell»> y otra con </pre>

[/schedule]

[schedule on=’2017-05-16′ at=»06:00″]

import Data.List (delete, nub)
import Data.Maybe (listToMaybe)
import qualified Data.Set as S
 
-- 1ª solución
-- ===========
 
celebridad1 :: Ord a => [(a,a)] -> Maybe a
celebridad1 r =
  listToMaybe [x | x <- personas r, esCelebridad r x]
 
personas :: Ord a => [(a,a)] -> [a]
personas r =
  nub (map fst r ++ map snd r)
 
esCelebridad :: Ord a => [(a,a)] -> a -> Bool
esCelebridad r x =
     [y | y <- ys, (y,x) `elem` r] == ys
  && null [y | y <- ys, (x,y) `elem` r]
  where ys = delete x (personas r)
 
-- 2ª solución
-- ===========
 
celebridad2 :: Ord a => [(a,a)] -> Maybe a
celebridad2 r =
  listToMaybe [x | x <- personas2 c, esCelebridad2 c x]
  where c = S.fromList r
 
--    λ> personas2 (S.fromList [(1,3),(2,1),(2,3)])
--    [1,2,3]
personas2 :: Ord a => S.Set (a,a) -> [a]
personas2 c =
  S.toList (S.map fst c `S.union` S.map snd c)
 
esCelebridad2 :: Ord a => S.Set (a,a) -> a -> Bool
esCelebridad2 c x = 
      [y | y <- ys, (y,x) `S.member` c] == ys
   && null [y | y <- ys, (x,y) `S.member` c]
   where ys = delete x (personas2 c)
 
-- 3ª definición
-- =============
 
celebridad3 :: Ord a => [(a,a)] -> Maybe a
celebridad3 r
  | S.null candidatos = Nothing
  | esCelebridad      = Just candidato
  | otherwise         = Nothing
  where
    conjunto          = S.fromList r
    dominio           = S.map fst conjunto
    rango             = S.map snd conjunto
    total             = dominio `S.union` rango
    candidatos        = rango `S.difference` dominio
    candidato         = S.findMin candidatos
    noCandidatos      = S.delete candidato total
    esCelebridad      =
      S.filter (\x -> (x,candidato) `S.member` conjunto) total == noCandidatos
 
-- Comparación de eficiencia
-- =========================
 
--    λ> celebridad1 [(x,1) | x <- [2..300]]
--    Just 1
--    (2.70 secs, 38,763,888 bytes)
--    λ> celebridad2 [(x,1) | x <- [2..300]]
--    Just 1
--    (0.01 secs, 0 bytes)
-- 
--    λ> celebridad2 [(x,1000) | x <- [1..999]]
--    Just 1000
--    (2.23 secs, 483,704,224 bytes)
--    λ> celebridad3 [(x,1000) | x <- [1..999]]
--    Just 1000
--    (0.02 secs, 0 bytes)
-- 
--    λ> celebridad3 [(x,10^6) | x <- [1..10^6-1]]
--    Just 1000000
--    (9.56 secs, 1,572,841,088 bytes)
--    λ> celebridad3 [(x,1) | x <- [2..10^6]]
--    Just 1
--    (6.17 secs, 696,513,320 bytes)

[/schedule]

Elementos con su doble en el conjunto

Definir la función

   conDoble :: [Int] -> [Int]

tal que (conDoble xs) es la lista de los elementos del conjunto xs (representado como una lista sin elementos repetidos) cuyo doble pertenece a xs. Por ejemplo,

   conDoble [1, 4, 3, 2, 9, 7, 18, 22]  ==  [1,2,9]
   conDoble [2, 4, 8, 10]               ==  [2,4]
   conDoble [7, 5, 11, 13, 1, 3]        ==  []
   length (conDoble4 [1..10^6])         ==  500000

Referencia: Basado en el problema Doubles de POJ (Peking University Online Judge System).

Soluciones

import Data.List (intersect, sort)
import qualified Data.Set as S
 
-- 1ª Definición
conDoble :: [Int] -> [Int]
conDoble xs =
  [x | x <- xs, 2 * x `elem` xs]
 
-- 2ª Definición
conDoble2 :: [Int] -> [Int]
conDoble2 xs = aux (sort xs)
  where aux [] = []
        aux (y:ys) | 2 * y `elem` xs = y : aux ys
                   | otherwise       = aux ys
 
-- 3ª definición
conDoble3 :: [Int] -> [Int]
conDoble3 xs =
  sort (map (`div` 2) (xs `intersect` (map (*2) xs)))
 
-- 4ª definición
conDoble4 :: [Int] -> [Int]
conDoble4 xs =
  S.toList (S.map (`div` 2) (ys `S.intersection` (S.map (*2) ys)))
  where ys = S.fromList xs
 
-- Comparación de eficiencia
--    λ> length (conDoble [1..10^4])
--    5000
--    (3.27 secs, 0 bytes)
--    λ> length (conDoble2 [1..10^4])
--    5000
--    (3.42 secs, 0 bytes)
--    λ> length (conDoble3 [1..10^4])
--    5000
--    (4.78 secs, 0 bytes)
--    λ> length (conDoble4 [1..10^4])
--    5000
--    (0.02 secs, 0 bytes)