Definir la función
sumasSubconjuntos :: Set Int -> Set Int |
sumasSubconjuntos :: Set Int -> Set Int
tal que (sumasSubconjuntos xs) es el conjunto de las sumas de cada uno de los subconjuntos de xs. Por ejemplo,
λ> sumasSubconjuntos (fromList [3,2,5])
fromList [0,2,3,5,7,8,10]
λ> length (sumasSubconjuntos (fromList [-40,-39..40]))
1641 |
λ> sumasSubconjuntos (fromList [3,2,5])
fromList [0,2,3,5,7,8,10]
λ> length (sumasSubconjuntos (fromList [-40,-39..40]))
1641
Soluciones
import Data.List
import Data.Set ( Set
, deleteFindMin
, fromList
, singleton
, toList
)
import qualified Data.Set as S
-- 1ª definición
-- =============
sumasSubconjuntos :: Set Int -> Set Int
sumasSubconjuntos xs =
fromList (map sum (subsequences (toList xs)))
-- 2ª definición
-- =============
sumasSubconjuntos2 :: Set Int -> Set Int
sumasSubconjuntos2 =
fromList . sumasSubconjuntosL . toList
sumasSubconjuntosL :: [Int] -> [Int]
sumasSubconjuntosL [] = [0]
sumasSubconjuntosL (x:xs) = ys `union` map (+x) ys
where ys = sumasSubconjuntosL xs
-- 3ª solución
-- ===========
sumasSubconjuntos3 :: Set Int -> Set Int
sumasSubconjuntos3 xs
| S.null xs = singleton 0
| otherwise = zs `S.union` (S.map (+y) zs)
where (y,ys) = deleteFindMin xs
zs = sumasSubconjuntos2 ys
-- Comparación de eficiencia
-- =========================
-- λ> length (sumasSubconjuntos (fromList [1..22]))
-- 254
-- (4.17 secs, 4,574,495,128 bytes)
-- λ> length (sumasSubconjuntos2 (fromList [1..22]))
-- 254
-- (0.03 secs, 5,583,200 bytes)
-- λ> length (sumasSubconjuntos3 (fromList [1..22]))
-- 254
-- (0.03 secs, 5,461,064 bytes)
--
-- λ> length (sumasSubconjuntos2 (fromList [1..60]))
-- 1831
-- (2.75 secs, 611,912,128 bytes)
-- λ> length (sumasSubconjuntos3 (fromList [1..60]))
-- 1831
-- (2.81 secs, 610,476,992 bytes) |
import Data.List
import Data.Set ( Set
, deleteFindMin
, fromList
, singleton
, toList
)
import qualified Data.Set as S
-- 1ª definición
-- =============
sumasSubconjuntos :: Set Int -> Set Int
sumasSubconjuntos xs =
fromList (map sum (subsequences (toList xs)))
-- 2ª definición
-- =============
sumasSubconjuntos2 :: Set Int -> Set Int
sumasSubconjuntos2 =
fromList . sumasSubconjuntosL . toList
sumasSubconjuntosL :: [Int] -> [Int]
sumasSubconjuntosL [] = [0]
sumasSubconjuntosL (x:xs) = ys `union` map (+x) ys
where ys = sumasSubconjuntosL xs
-- 3ª solución
-- ===========
sumasSubconjuntos3 :: Set Int -> Set Int
sumasSubconjuntos3 xs
| S.null xs = singleton 0
| otherwise = zs `S.union` (S.map (+y) zs)
where (y,ys) = deleteFindMin xs
zs = sumasSubconjuntos2 ys
-- Comparación de eficiencia
-- =========================
-- λ> length (sumasSubconjuntos (fromList [1..22]))
-- 254
-- (4.17 secs, 4,574,495,128 bytes)
-- λ> length (sumasSubconjuntos2 (fromList [1..22]))
-- 254
-- (0.03 secs, 5,583,200 bytes)
-- λ> length (sumasSubconjuntos3 (fromList [1..22]))
-- 254
-- (0.03 secs, 5,461,064 bytes)
--
-- λ> length (sumasSubconjuntos2 (fromList [1..60]))
-- 1831
-- (2.75 secs, 611,912,128 bytes)
-- λ> length (sumasSubconjuntos3 (fromList [1..60]))
-- 1831
-- (2.81 secs, 610,476,992 bytes)