Menu Close

Etiqueta: Property

Puntos en regiones rectangulares

Los puntos se puede representar mediante pares de números

   type Punto = (Int,Int)

y las regiones rectangulares mediante el siguiente tipo de dato

   data Region = Rectangulo Punto  Punto
               | Union      Region Region
               | Diferencia Region Region
     deriving (Eq, Show)

donde

  • (Rectangulo p1 p2) es la región formada por un rectángulo cuyo vértice superior izquierdo es p1 y su vértice inferior derecho es p2.
  • (Union r1 r2) es la región cuyos puntos pertenecen a alguna de las regiones r1 y r2.
  • (Diferencia r1 r2) es la región cuyos puntos pertenecen a la región r1 pero no pertenecen a la r2.

Definir la función

   enRegion :: Punto -> Region -> Bool

tal que (enRegion p r) se verifica si el punto p pertenece a la región r. Por ejemplo, usando las regiones definidas por

   r0021, r3051, r4162 :: Region
   r0021 = Rectangulo (0,0) (2,1)
   r3051 = Rectangulo (3,0) (5,1)
   r4162 = Rectangulo (4,1) (6,2)

se tiene

   enRegion (1,0) r0021                                   ==  True
   enRegion (3,0) r0021                                   ==  False
   enRegion (1,1) (Union r0021 r3051)                     ==  True
   enRegion (4,0) (Union r0021 r3051)                     ==  True
   enRegion (4,2) (Union r0021 r3051)                     ==  False
   enRegion (3,1) (Diferencia r3051 r4162)                ==  True
   enRegion (4,1) (Diferencia r3051 r4162)                ==  False
   enRegion (4,2) (Diferencia r3051 r4162)                ==  False
   enRegion (4,2) (Union (Diferencia r3051 r4162) r4162)  ==  True

Comprobar con QuickCheck que si el punto p está en la región r1, entonces, para cualquier región r2, p está en (Union r1 r2) y en (Union r2 r1), pero no está en (Diferencia r2 r1).

Soluciones

module Puntos_en_regiones_rectangulares where
 
import Test.QuickCheck (Arbitrary, Gen, Property, (==>), arbitrary, oneof,
                        sized, generate, quickCheck, quickCheckWith, stdArgs,
                        Args(maxDiscardRatio))
 
type Punto = (Int,Int)
 
data Region = Rectangulo Punto  Punto
            | Union      Region Region
            | Diferencia Region Region
  deriving (Eq, Show)
 
r0021, r3051, r4162 :: Region
r0021 = Rectangulo (0,0) (2,1)
r3051 = Rectangulo (3,0) (5,1)
r4162 = Rectangulo (4,1) (6,2)
 
enRegion :: Punto -> Region -> Bool
enRegion (x,y) (Rectangulo (x1,y1) (x2,y2)) =
  x1 <= x && x <= x2 &&
  y1 <= y && y <= y2
enRegion p (Union  r1 r2) =
  enRegion p r1 || enRegion p r2
enRegion p (Diferencia r1 r2) =
  enRegion p r1 && not (enRegion p r2)
 
-- (regionArbitraria n) es un generador de regiones arbitrarias de orden
-- n. Por ejemplo,
--    λ> generate (regionArbitraria 2)
--    Rectangulo (30,-26) (-2,-8)
--    λ> generate (regionArbitraria 2)
--    Union (Union (Rectangulo (-2,-5) (6,1)) (Rectangulo(3,7) (11,15)))
--          (Diferencia (Rectangulo (9,8) (-2,6)) (Rectangulo (-2,2) (7,8)))
regionArbitraria :: Int -> Gen Region
regionArbitraria 0 =
  Rectangulo <$> arbitrary <*> arbitrary
regionArbitraria n =
  oneof [Rectangulo <$> arbitrary <*> arbitrary,
         Union <$> subregion <*> subregion,
         Diferencia <$> subregion <*> subregion]
  where subregion = regionArbitraria (n `div` 2)
 
-- Region está contenida en Arbitrary
instance Arbitrary Region where
  arbitrary = sized regionArbitraria
 
-- La propiedad es
prop_enRegion :: Punto -> Region -> Region -> Property
prop_enRegion p r1 r2 =
  enRegion p r1 ==>
  (enRegion p (Union  r1 r2) &&
   enRegion p (Union  r2 r1) &&
   not (enRegion p (Diferencia r2 r1)))
 
-- La comprobación es
--    λ> quickCheck prop_enRegion
--    *** Gave up! Passed only 78 tests; 1000 discarded tests.
--
--    λ> quickCheckWith (stdArgs {maxDiscardRatio=20}) prop_enRegion
--    +++ OK, passed 100 tests.

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Ordenada cíclicamente

Se dice que una sucesión x(1), …, x(n) está ordenada cíclicamente si existe un índice i tal que la sucesión

   x(i), x(i+1), ..., x(n), x(1), ..., x(i-1)

está ordenada crecientemente de forma estricta.

Definir la función

   ordenadaCiclicamente :: Ord a => [a] -> Maybe Int

tal que (ordenadaCiclicamente xs) es el índice a partir del cual está ordenada, si la lista está ordenado cíclicamente y Nothing en caso contrario. Por ejemplo,

   ordenadaCiclicamente [1,2,3,4]      ==  Just 0
   ordenadaCiclicamente [5,8,1,3]      ==  Just 2
   ordenadaCiclicamente [4,6,7,5,1,3]  ==  Nothing
   ordenadaCiclicamente [1,0,3,2]      ==  Nothing
   ordenadaCiclicamente [1,2,0]        ==  Just 2
   ordenadaCiclicamente "cdeab"        ==  Just 3

Nota: Se supone que el argumento es una lista no vacía sin elementos repetidos.

Soluciones

module Ordenada_ciclicamente where
 
import Test.QuickCheck (Arbitrary, Gen, NonEmptyList (NonEmpty), Property,
                        arbitrary, chooseInt, collect, quickCheck)
import Data.List       (nub, sort)
import Data.Maybe      (isJust, listToMaybe)
 
-- 1ª solución
-- ===========
 
ordenadaCiclicamente1 :: Ord a => [a] -> Maybe Int
ordenadaCiclicamente1 xs = aux 0 xs
  where n = length xs
        aux i zs
          | i == n      = Nothing
          | ordenada zs = Just i
          | otherwise   = aux (i+1) (siguienteCiclo zs)
 
-- (ordenada xs) se verifica si la lista xs está ordenada
-- crecientemente. Por ejemplo,
--   ordenada "acd"   ==  True
--   ordenada "acdb"  ==  False
ordenada :: Ord a => [a] -> Bool
ordenada []     = True
ordenada (x:xs) = all (x <) xs && ordenada xs
 
-- (siguienteCiclo xs) es la lista obtenida añadiendo el primer elemento
-- de xs al final del resto de xs. Por ejemplo,
--   siguienteCiclo [3,2,5]  =>  [2,5,3]
siguienteCiclo :: [a] -> [a]
siguienteCiclo []     = []
siguienteCiclo (x:xs) = xs ++ [x]
 
-- 2ª solución
-- ===========
 
ordenadaCiclicamente2 :: Ord a => [a] -> Maybe Int
ordenadaCiclicamente2 xs =
  listToMaybe [n | n <- [0..length xs-1],
                   ordenada (drop n xs ++ take n xs)]
 
-- 3ª solución
-- ===========
 
ordenadaCiclicamente3 :: Ord a => [a] -> Maybe Int
ordenadaCiclicamente3 xs
  | ordenada (bs ++ as) = Just k
  | otherwise           = Nothing
  where (_,k)   = minimum (zip xs [0..])
        (as,bs) = splitAt k xs
 
-- Comprobación de equivalencia
-- ============================
 
-- La propiedad es
prop_ordenadaCiclicamente1 :: NonEmptyList Int -> Bool
prop_ordenadaCiclicamente1 (NonEmpty xs) =
  ordenadaCiclicamente1 xs == ordenadaCiclicamente2 xs
 
-- La comprobación es
--    λ> quickCheck prop_ordenadaCiclicamente1
--    +++ OK, passed 100 tests.
 
-- La propiedad para analizar los casos de prueba
prop_ordenadaCiclicamente2 :: NonEmptyList Int -> Property
prop_ordenadaCiclicamente2 (NonEmpty xs) =
  collect (isJust (ordenadaCiclicamente1 xs)) $
  ordenadaCiclicamente1 xs == ordenadaCiclicamente2 xs
 
-- El análisis es
--    λ> quickCheck prop_ordenadaCiclicamente2
--    +++ OK, passed 100 tests:
--    89% False
--    11% True
 
-- Tipo para generar listas
newtype Lista = L [Int]
  deriving Show
 
-- Generador de listas.
listaArbitraria :: Gen Lista
listaArbitraria = do
  x <- arbitrary
  xs <- arbitrary
  let ys = x : xs
  k <- chooseInt (0, length ys)
  let (as,bs) = splitAt k (sort (nub ys))
  return (L (bs ++ as))
 
-- Lista es una subclase de Arbitrary.
instance Arbitrary Lista where
  arbitrary = listaArbitraria
 
-- La propiedad para analizar los casos de prueba
prop_ordenadaCiclicamente3 :: Lista -> Property
prop_ordenadaCiclicamente3 (L xs) =
  collect (isJust (ordenadaCiclicamente1 xs)) $
  ordenadaCiclicamente1 xs == ordenadaCiclicamente2 xs
 
-- El análisis es
--    λ> quickCheck prop_ordenadaCiclicamente3
--    +++ OK, passed 100 tests (100% True).
 
-- Tipo para generar
newtype Lista2 = L2 [Int]
  deriving Show
 
-- Generador de listas
listaArbitraria2 :: Gen Lista2
listaArbitraria2 = do
  x' <- arbitrary
  xs <- arbitrary
  let ys = x' : xs
  k <- chooseInt (0, length ys)
  let (as,bs) = splitAt k (sort (nub ys))
  n <- chooseInt (0,1)
  return (if even n
          then L2 (bs ++ as)
          else L2 ys)
 
-- Lista es una subclase de Arbitrary.
instance Arbitrary Lista2 where
  arbitrary = listaArbitraria2
 
-- La propiedad para analizar los casos de prueba
prop_ordenadaCiclicamente4 :: Lista2 -> Property
prop_ordenadaCiclicamente4 (L2 xs) =
  collect (isJust (ordenadaCiclicamente1 xs)) $
  ordenadaCiclicamente1 xs == ordenadaCiclicamente2 xs
 
-- El análisis es
--    λ> quickCheck prop_ordenadaCiclicamente4
--    +++ OK, passed 100 tests:
--    51% True
--    49% False
 
-- La propiedad es
prop_ordenadaCiclicamente :: Lista2 -> Bool
prop_ordenadaCiclicamente (L2 xs) =
  all (== ordenadaCiclicamente1 xs)
      [ordenadaCiclicamente2 xs,
       ordenadaCiclicamente3 xs]
 
-- La comprobación es
--    λ> quickCheck prop_ordenadaCiclicamente
--    +++ OK, passed 100 tests.
 
-- Comparación de eficiencia
-- =========================
 
-- La comparación es
--    λ> ordenadaCiclicamente1 ([100..4000] ++ [1..99])
--    Just 3901
--    (3.27 secs, 2,138,864,568 bytes)
--    λ> ordenadaCiclicamente2 ([100..4000] ++ [1..99])
--    Just 3901
--    (2.44 secs, 1,430,040,008 bytes)
--    λ> ordenadaCiclicamente3 ([100..4000] ++ [1..99])
--    Just 3901
--    (1.18 secs, 515,549,200 bytes)

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>