Menu Close

Etiqueta: mapM

Emparejamiento de árboles

Los árboles se pueden representar mediante el siguiente tipo de datos

   data Arbol a = N a [Arbol a]
     deriving (Show, Eq)

Por ejemplo, los árboles

     1               3
    / \             /|\
   6   3           / | \
       |          5  4  7
       5          |     /\
                  6    2  1

se representan por

   ej1, ej2 :: Arbol Int
   ej1 = N 1 [N 6 [],N 3 [N 5 []]]
   ej2 = N 3 [N 5 [N 6 []], N 4 [], N 7 [N 2 [], N 1 []]]

Definir la función

   emparejaArboles :: (a -> b -> c) -> Arbol a -> Arbol b -> Arbol c

tal que (emparejaArboles f a1 a2) es el árbol obtenido aplicando la función f a los elementos de los árboles a1 y a2 que se encuentran en la misma posición. Por ejemplo,

   λ> emparejaArboles (+) (N 1 [N 2 [], N 3[]]) (N 1 [N 6 []])
   N 2 [N 8 []]
   λ> emparejaArboles (+) ej1 ej2
   N 4 [N 11 [],N 7 []]
   λ> emparejaArboles (+) ej1 ej1
   N 2 [N 12 [],N 6 [N 10 []]]

Soluciones

module Emparejamiento_de_arboles where
 
import Data.Tree (Tree (..))
import Control.Monad.Zip (mzipWith)
import Test.QuickCheck (Arbitrary, Gen, arbitrary, sublistOf, sized, quickCheck)
 
data Arbol a = N a [Arbol a]
  deriving (Show, Eq)
 
ej1, ej2 :: Arbol Int
ej1 = N 1 [N 6 [],N 3 [N 5 []]]
ej2 = N 3 [N 5 [N 6 []], N 4 [], N 7 [N 2 [], N 1 []]]
 
-- 1ª solución
-- ===========
 
emparejaArboles1 :: (a -> b -> c) -> Arbol a -> Arbol b -> Arbol c
emparejaArboles1 f (N x xs) (N y ys) =
  N (f x y) (zipWith (emparejaArboles1 f) xs ys)
 
-- 2ª solución
-- ===========
 
emparejaArboles2 :: (a -> b -> c) -> Arbol a -> Arbol b -> Arbol c
emparejaArboles2 f x y =
  treeAarbol (mzipWith f (arbolAtree x) (arbolAtree y))
 
arbolAtree :: Arbol a -> Tree a
arbolAtree (N x xs) = Node x (map arbolAtree xs)
 
treeAarbol :: Tree a -> Arbol a
treeAarbol (Node x xs) = N x (map treeAarbol xs)
 
-- Comprobación de equivalencia
-- ============================
 
-- (arbolArbitrario n) es un árbol aleatorio de orden n. Por ejemplo,
--    λ> generate (arbolArbitrario 5 :: Gen (Arbol Int))
--    N (-26) [N 8 [N 6 [N 11 []]],N 7 []]
--    λ> generate (arbolArbitrario 5 :: Gen (Arbol Int))
--    N 1 []
--    λ> generate (arbolArbitrario 5 :: Gen (Arbol Int))
--    N (-19) [N (-11) [],N 25 [],N 19 [N (-27) [],N (-19) [N 17 []]]]
arbolArbitrario :: Arbitrary a => Int -> Gen (Arbol a)
arbolArbitrario n = do
  x  <- arbitrary
  ms <- sublistOf [0 .. n `div` 2]
  as <- mapM arbolArbitrario ms
  return (N x as)
 
-- Arbol es una subclase de Arbitraria
instance Arbitrary a => Arbitrary (Arbol a) where
  arbitrary = sized arbolArbitrario
 
-- La propiedad es
prop_emparejaArboles :: Arbol Int -> Arbol Int -> Bool
prop_emparejaArboles x y =
  emparejaArboles1 (+) x y == emparejaArboles2 (+) x y &&
  emparejaArboles1 (*) x y == emparejaArboles2 (*) x y
 
-- La comprobación es
--    λ> quickCheck prop_emparejaArboles
--    +++ OK, passed 100 tests.
 
-- Comparación de eficiencia
-- =========================
 
-- La comparación es
--    λ> a500 <- generate (arbolArbitrario 500 :: Gen (Arbol Int))
--    λ> emparejaArboles1 (+) a500 a500 == emparejaArboles1 (+) a500 a500
--    True
--    (1.92 secs, 1,115,813,352 bytes)
--    λ> emparejaArboles2 (+) a500 a500 == emparejaArboles2 (+) a500 a500
--    True
--    (3.28 secs, 2,212,257,928 bytes)
--
--    λ> b500 = arbolAtree a500
--    λ> mzipWith (+) b500 b500 == mzipWith (+) b500 b500
--    True
--    (0.21 secs, 563,503,112 bytes)

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Mayor producto de las ramas de un árbol

Los árboles se pueden representar mediante el siguiente tipo de datos

   data Arbol a = N a [Arbol a]
     deriving Show

Por ejemplo, los árboles

      1              3
    /  \            /|\
   2   3           / | \
       |          5  4  7
       4          |     /\
                  6    2  1

se representan por

   ej1, ej2 :: Arbol Int
   ej1 = N 1 [N 2 [],N 3 [N 4 []]]
   ej2 = N 3 [N 5 [N 6 []], N 4 [], N 7 [N 2 [], N 1 []]]

Definir la función

   mayorProducto :: (Ord a, Num a) => Arbol a -> a

tal que (mayorProducto a) es el mayor producto de las ramas del árbol a. Por ejemplo,

   λ> mayorProducto (N 1 [N 2 [], N  3 []])
   3
   λ> mayorProducto (N 1 [N 8 [], N  4 [N 3 []]])
   12
   λ> mayorProducto (N 1 [N 2 [],N 3 [N 4 []]])
   12
   λ> mayorProducto (N 3 [N 5 [N 6 []], N 4 [], N 7 [N 2 [], N 1 []]])
   90
   λ> mayorProducto (N (-8) [N 0 [N (-9) []],N 6 []])
   0
   λ> a = N (-4) [N (-7) [],N 14 [N 19 []],N (-1) [N (-6) [],N 21 []],N (-4) []]
   λ> mayorProducto a
   84

Soluciones

import Test.QuickCheck
 
data Arbol a = N a [Arbol a]
  deriving Show
 
-- 1ª solución
-- ===========
 
mayorProducto1 :: (Ord a, Num a) => Arbol a -> a
mayorProducto1 a = maximum [product xs | xs <- ramas a]
 
-- (ramas a) es la lista de las ramas del árbol a. Por ejemplo,
--    λ> ramas (N 3 [N 5 [N 6 []], N 4 [], N 7 [N 2 [], N 1 []]])
--    [[3,5,6],[3,4],[3,7,2],[3,7,1]]
ramas :: Arbol b -> [[b]]
ramas (N x []) = [[x]]
ramas (N x as) = [x : xs | a <- as, xs <- ramas a]
 
-- 2ª solución
-- ===========
 
mayorProducto2 :: (Ord a, Num a) => Arbol a -> a
mayorProducto2 a = maximum (map product (ramas a))
 
-- 3ª solución
-- ===========
 
mayorProducto3 :: (Ord a, Num a) => Arbol a -> a
mayorProducto3 = maximum . map product . ramas
 
-- 4º solución
-- ===========
 
mayorProducto4 :: (Ord a, Num a) => Arbol a -> a
mayorProducto4 = maximum . productosRamas
 
-- (productosRamas a) es la lista de los productos de las ramas
-- del árbol a. Por ejemplo,
--    λ> productosRamas (N 3 [N 5 [N 6 []], N 4 [], N 7 [N 2 [], N 1 []]])
--    [90,12,42,21]
productosRamas :: (Ord a, Num a) => Arbol a -> [a]
productosRamas (N x []) = [x]
productosRamas (N x xs) = [x * y | a <- xs, y <- productosRamas a]
 
-- 5ª solución
-- ===========
 
mayorProducto5 :: (Ord a, Num a) => Arbol a -> a
mayorProducto5 (N x []) = x
mayorProducto5 (N x xs)
  | x > 0     = x * maximum (map mayorProducto5 xs)
  | x == 0    = 0
  | otherwise = x * minimum (map menorProducto xs)
 
-- (menorProducto a) es el menor producto de las ramas del árbol
-- a. Por ejemplo,
--    λ> menorProducto (N 1 [N 2 [], N  3 []])
--    2
--    λ> menorProducto (N 1 [N 8 [], N  4 [N 3 []]])
--    8
--    λ> menorProducto (N 1 [N 2 [],N 3 [N 4 []]])
--    2
--    λ> menorProducto (N 3 [N 5 [N 6 []], N 4 [], N 7 [N 2 [], N 1 []]])
--    12
menorProducto :: (Ord a, Num a) => Arbol a -> a
menorProducto (N x []) = x
menorProducto (N x xs)
  | x > 0     = x * minimum (map menorProducto xs)
  | x == 0    = 0
  | otherwise = x * maximum (map mayorProducto2 xs)
 
-- 6ª solución
-- ===========
 
mayorProducto6 :: (Ord a, Num a) => Arbol a -> a
mayorProducto6 = maximum . aux
  where aux (N a []) = [a]
        aux (N a b)  = [v,u]
          where u = maximum g
                v = minimum g
                g = map (*a) (concatMap aux b)
 
-- Comprobación de equivalencia
-- ============================
 
-- (arbolArbitrario n) es un árbol aleatorio de orden n. Por ejemplo,
--   > sample (arbolArbitrario 5 :: Gen (Arbol Int))
--   N 0 [N 0 []]
--   N (-2) []
--   N 4 []
--   N 2 [N 4 []]
--   N 8 []
--   N (-2) [N (-9) [],N 7 []]
--   N 11 []
--   N (-11) [N 4 [],N 14 []]
--   N 10 [N (-3) [],N 13 []]
--   N 12 [N 11 []]
--   N 20 [N (-18) [],N (-13) []]
arbolArbitrario :: Arbitrary a => Int -> Gen (Arbol a)
arbolArbitrario n = do
  x  <- arbitrary
  ms <- sublistOf [0 .. n `div` 2]
  as <- mapM arbolArbitrario ms
  return (N x as)
 
-- Arbol es una subclase de Arbitraria
instance Arbitrary a => Arbitrary (Arbol a) where
  arbitrary = sized arbolArbitrario
 
-- La propiedad es
prop_mayorProducto :: Arbol Integer -> Bool
prop_mayorProducto a =
  all (== mayorProducto1 a)
      [f a | f <- [ mayorProducto2
                  , mayorProducto3
                  , mayorProducto4
                  , mayorProducto5
                  , mayorProducto6
                  ]]
 
-- La comprobación es
--    λ> quickCheck prop_mayorProducto
--    +++ OK, passed 100 tests.
 
-- Comparación de eficiencia
-- =========================
 
-- La comparación es
--    λ> ejArbol <- generate (arbolArbitrario 600 :: Gen (Arbol Integer))
--    λ> mayorProducto1 ejArbol
--    2419727651266241493467136000
--    (1.87 secs, 1,082,764,480 bytes)
--    λ> mayorProducto2 ejArbol
--    2419727651266241493467136000
--    (1.57 secs, 1,023,144,008 bytes)
--    λ> mayorProducto3 ejArbol
--    2419727651266241493467136000
--    (1.55 secs, 1,023,144,248 bytes)
--    λ> mayorProducto4 ejArbol
--    2419727651266241493467136000
--    (1.60 secs, 824,473,800 bytes)
--    λ> mayorProducto5 ejArbol
--    2419727651266241493467136000
--    (0.83 secs, 732,370,352 bytes)
--    λ> mayorProducto6 ejArbol
--    2419727651266241493467136000
--    (0.98 secs, 817,473,344 bytes)
--
--    λ> ejArbol2 <- generate (arbolArbitrario 700 :: Gen (Arbol Integer))
--    λ> mayorProducto5 ejArbol2
--    1044758937398026715504640000000
--    (4.94 secs, 4,170,324,376 bytes)
--    λ> mayorProducto6 ejArbol2
--    1044758937398026715504640000000
--    (5.88 secs, 4,744,782,024 bytes)

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Ceros con los n primeros números

Los números del 1 al 3 se pueden escribir de dos formas, con el signo más o menos entre ellos, tales que su suma sea 0:

    1+2-3 = 0
   -1-2+3 = 0

Definir la función

   ceros :: Int -> [[Int]]

tal que (ceros n) son las posibles formas de obtener cero sumando los números del 1 al n, con el signo más o menos entre ellos. Por ejemplo,

   ceros 3           ==  [[1,2,-3],[-1,-2,3]]
   ceros 4           ==  [[1,-2,-3,4],[-1,2,3,-4]]
   ceros 5           ==  []
   length (ceros 7)  ==  8
   take 3 (ceros 7)  ==  [[1,2,-3,4,-5,-6,7],[1,2,-3,-4,5,6,-7],[1,-2,3,4,-5,6,-7]]

Soluciones

-- 1ª solución
-- ===========
 
ceros :: Int -> [[Int]]
ceros n = [xs | xs <- candidatos n, sum xs == 0]
 
-- (candidatos n) es la lista de los números del 1 al n con los signos
-- más o menos. Por ejemplo,
--    λ> candidatos 1
--    [[1],[-1]]
--    λ> candidatos 2
--    [[1,2],[1,-2],[-1,2],[-1,-2]]
--    λ> candidatos 3
--    [[1,2,3],[1,2,-3],[1,-2,3],[1,-2,-3],[-1,2,3],[-1,2,-3],[-1,-2,3],[-1,-2,-3]]
candidatos :: Int -> [[Int]]
candidatos n = productoCartesiano [[i,-i] | i <- [1..n]]
 
-- (productoCartesiano xss) es el producto cartesiano de los conjuntos
-- xss. Por ejemplo, 
--    λ> productoCartesiano [[1,3],[2,5],[6,4]]
--    [[1,2,6],[1,2,4],[1,5,6],[1,5,4],[3,2,6],[3,2,4],[3,5,6],[3,5,4]]
productoCartesiano :: [[a]] -> [[a]]
productoCartesiano []       = [[]]
productoCartesiano (xs:xss) =
  [x:ys | x <- xs, ys <- productoCartesiano xss]
 
-- 2ª solución
-- ===========
 
ceros2 :: Int -> [[Int]]
ceros2 n = [xs | xs <- candidatos2 n, sum xs == 0]
 
candidatos2 :: Int -> [[Int]]
candidatos2 n = mapM (\i -> [i,-i]) [1..n]
 
-- 3ª solución
-- ===========
 
ceros3 :: Int -> [[Int]]
ceros3 n = [xs | xs <- mapM (\i -> [i,-i]) [1..n], sum xs == 0]
 
-- 4ª solución
-- ===========
 
ceros4 :: Integer -> [[Integer]]
ceros4 = map fst
       . filter ((==0) . snd)
       . sumas
 
-- (sumas n) es la lista de las candidatos con los n primeros números y
-- sus sumas. Por ejemplo,
--    λ> sumas 2
--    [([1,2],3),([-1,2],1),([1,-2],-1),([-1,-2],-3)]
--    λ> sumas 3
--    [([1,2,3],6),([-1,2,3],4),([1,-2,3],2),([-1,-2,3],0),([1,2,-3],0),
--     ([-1,2,-3],-2),([1,-2,-3],-4),([-1,-2,-3],-6)]
sumas :: Integer -> [([Integer],Integer)]
sumas = foldr aux [([], 0)]
      . enumFromTo 1
  where
    aux n = concatMap (\(ns', s') -> [(n : ns', s' + n), (-n : ns', s' - n)])
 
-- Comparación de eficiencia
-- =========================
 
--    λ> length (ceros 18)
--    0
--    (4.14 secs, 1,094,854,776 bytes)
--    λ> length (ceros2 18)
--    0
--    (1.16 secs, 375,541,680 bytes)
--    λ> length (ceros3 18)
--    0
--    (1.13 secs, 375,540,192 bytes)
--    λ> length (ceros4 18)
--    0
--    (0.69 secs, 157,316,688 bytes)