Menu Close

Etiqueta: lcm

Pares definidos por su MCD y su MCM

Definir las siguientes funciones

   pares  :: Integer -> Integer -> [(Integer,Integer)]
   nPares :: Integer -> Integer -> Integer

tales que

  • (pares a b) es la lista de los pares de números enteros positivos tales que su máximo común divisor es a y su mínimo común múltiplo es b. Por ejemplo,
     pares 3 3  == [(3,3)]
     pares 4 12 == [(4,12),(12,4)]
     pares 2 12 == [(2,12),(4,6),(6,4),(12,2)]
     pares 2 60 == [(2,60),(4,30),(6,20),(10,12),(12,10),(20,6),(30,4),(60,2)]
     pares 2 7  == []
     pares 12 3  ==  []
     length (pares 3 (product [3,5..91]))  ==  8388608
  • (nPares a b) es el número de pares de enteros positivos tales que su máximo común divisor es a y su mínimo común múltiplo es b. Por ejemplo,
     nPares 3 3   ==  1
     nPares 4 12  ==  2
     nPares 2 12  ==  4
     nPares 2 60  ==  8
     nPares 2 7   ==  0
     nPares 12 3  ==  0
     nPares 3 (product [3..3*10^4]) `mod` (10^12)  ==  477999992832
     length (show (nPares 3 (product [3..3*10^4])))  ==  977

Soluciones

import Data.Numbers.Primes (primeFactors)
import Data.List (genericLength, group, nub, sort, subsequences)
import Test.QuickCheck
 
-- 1ª definición de pares
-- ======================
 
pares1 :: Integer -> Integer -> [(Integer,Integer)]
pares1 a b = [(x,y) | x <- [1..b]
                    , y <- [1..b]
                    , gcd x y == a
                    , lcm x y == b]
 
-- 2ª definición de pares
-- ======================
 
pares2 :: Integer -> Integer -> [(Integer,Integer)]
pares2 a b = [(x,y) | x <- [a,a+a..b]
                    , y <- [a,a+a..b]
                    , gcd x y == a
                    , lcm x y == b]
 
-- Comparación de eficiencia
--    λ> length (pares1 3 (product [3,5..11]))
--    16
--    (95.12 secs, 86,534,165,528 bytes)
--    λ> length (pares2 3 (product [3,5..11]))
--    16
--    (15.80 secs, 14,808,762,128 bytes)
 
-- 3ª definición de pares
-- ======================
 
pares3 :: Integer -> Integer -> [(Integer,Integer)]
pares3 a b = [(x,y) | x <- [a,a+a..b]
                    , c `rem` x == 0
                    , let y = c `div` x
                    , gcd x y == a
                    ]
  where c = a * b
 
-- Comparacioń de eficiencia
--    λ> length (pares2 3 (product [3,5..11]))
--    16
--    (15.80 secs, 14,808,762,128 bytes)
--    λ> length (pares3 3 (product [3,5..11]))
--    16
--    (0.01 secs, 878,104 bytes)
 
-- 4ª definición de pares
-- ======================
 
-- Para la cuarta definición de pares se observa la relación con los
-- factores primos
--    λ> [(primeFactors x, primeFactors y) | (x,y) <- pares1 2 12]
--    [([2],[2,2,3]),([2,2],[2,3]),([2,3],[2,2]),([2,2,3],[2])]
--    λ> [primeFactors x | (x,y) <- pares1 2 12]
--    [[2],[2,2],[2,3],[2,2,3]]
--    λ> [primeFactors x | (x,y) <- pares1 2 60]
--    [[2],[2,2],[2,3],[2,5],[2,2,3],[2,2,5],[2,3,5],[2,2,3,5]]
--    λ> [primeFactors x | (x,y) <- pares1 6 60]
--    [[2,3],[2,2,3],[2,3,5],[2,2,3,5]]
--    λ> [primeFactors x | (x,y) <- pares1 2 24]
--    [[2],[2,3],[2,2,2],[2,2,2,3]]
-- Se observa que cada pares se obtiene de uno de los subconjuntos de los
-- divisores primos de b/a. Por ejemplo,
--    λ> (a,b) = (2,24)
--    λ> b `div` a
--    12
--    λ> primeFactors it
--    [2,2,3]
--    λ> group it
--    [[2,2],[3]]
--    λ> subsequences it
--    [[],[[2,2]],[[3]],[[2,2],[3]]]
--    λ> map concat it
--    [[],[2,2],[3],[2,2,3]]
--    λ> map product it
--    [1,4,3,12]
--    λ> [(a * x, b `div` x) | x <- it]
--    [(2,24),(8,6),(6,8),(24,2)]
-- A partir de la observación se construye la siguiente definición
 
pares4 :: Integer -> Integer -> [(Integer,Integer)]
pares4 a b
  | b `mod` a /= 0 = []
  | otherwise =
    [(a * x, b `div` x)
    | x <- map (product . concat)
               ((subsequences . group . primeFactors) (b `div` a))]
 
-- Nota. La función pares4 calcula el mismo conjunto que las anteriores,
-- pero no necesariamente en el mismo orden. Por ejemplo,
--    λ> pares3 2 60 
--    [(2,60),(4,30),(6,20),(10,12),(12,10),(20,6),(30,4),(60,2)]
--    λ> pares4 2 60 
--    [(2,60),(4,30),(6,20),(12,10),(10,12),(20,6),(30,4),(60,2)]
--    λ> pares3 2 60 == sort (pares4 2 60)
--    True
 
-- Comparacioń de eficiencia
--    λ> length (pares3 3 (product [3,5..17]))
--    64
--    (4.44 secs, 2,389,486,440 bytes)
--    λ> length (pares4 3 (product [3,5..17]))
--    64
--    (0.00 secs, 177,704 bytes)
 
-- Propiedades de equivalencia de pares
-- ====================================
 
prop_pares :: Integer -> Integer -> Property
prop_pares a b =
  a > 0 && b > 0 ==>
  all (== pares1 a b)
      [sort (f a b) | f <- [ pares2
                           , pares3
                           , pares4
                           ]]
 
prop_pares2 :: Integer -> Integer -> Property
prop_pares2 a b =
  a > 0 && b > 0 ==>
  all (== pares1 a (a * b))
      [sort (f a (a * b)) | f <- [ pares2
                                 , pares3
                                 , pares4
                                 ]]
 
-- La comprobación es
--    λ> quickCheckWith (stdArgs {maxSize=10}) prop_pares
--    +++ OK, passed 100 tests.
--    λ> quickCheckWith (stdArgs {maxSize=10}) prop_pares
--    +++ OK, passed 100 tests.
--    λ> quickCheckWith (stdArgs {maxSize=10}) prop_pares2
--    +++ OK, passed 100 tests.
 
-- 1ª definición de nPares
-- =======================
 
nPares1 :: Integer -> Integer -> Integer
nPares1 a b = genericLength (pares4 a b)
 
-- 2ª definición de nPares
-- =======================
 
nPares2 :: Integer -> Integer -> Integer
nPares2 a b = 2^(length (nub (primeFactors (b `div` a))))
 
-- Comparación de eficiencia
--    λ> nPares1 3 (product [3,5..91])
--    8388608
--    (4.68 secs, 4,178,295,920 bytes)
--    λ> nPares2 3 (product [3,5..91])
--    8388608
--    (0.00 secs, 234,688 bytes)
 
-- Propiedad de equivalencia de nPares
-- ===================================
 
prop_nPares :: Integer -> Integer -> Property
prop_nPares a b =
  a > 0 && b > 0 ==>
  nPares1 a (a * b) == nPares2 a (a * b)
 
-- La comprobación es
--    λ> quickCheckWith (stdArgs {maxSize=10}) prop_nPares
--    +++ OK, passed 100 tests.

Pensamiento

Largo es el camino de la enseñanza por medio de teorías; breve y eficaz por medio de ejemplos. ~ Séneca

Menor divisible por todos

Definir la función

   menorDivisible :: Integer -> Integer -> Integer

tal que (menorDivisible a b) es el menor número divisible por todos los números desde a hasta b, ambos inclusive. Por ejemplo,

   menorDivisible 1 10                        ==  2520
   length (show (menorDivisible 1 (3*10^5)))  ==  130141

Nota: Este ejercicio está basado en el problema 5 del Proyecto Euler

Soluciones

import Data.List (foldl')
 
-- 1ª solución
-- ===========
 
menorDivisible :: Integer -> Integer -> Integer
menorDivisible a b =
  head [x | x <- [b..]
          , and [x `mod` y == 0 | y <- [a..b]]]
 
-- 2ª solución
-- ===========
 
menorDivisible2 :: Integer -> Integer -> Integer
menorDivisible2 a b  
  | a == b    = a
  | otherwise = lcm a (menorDivisible (a+1) b)
 
-- 3ª solución
-- ============
 
menorDivisible3 :: Integer -> Integer -> Integer
menorDivisible3 a b = foldl lcm 1 [a..b] 
 
-- 4ª solución
-- ===========
 
menorDivisible4 :: Integer -> Integer -> Integer
menorDivisible4 a b = foldl1 lcm [a..b] 
 
-- 5ª solución
-- ===========
 
menorDivisible5 :: Integer -> Integer -> Integer
menorDivisible5 a b = foldl' lcm 1 [a..b] 
 
-- 6ª solución
-- ===========
 
menorDivisible6 :: Integer -> Integer -> Integer
menorDivisible6 a b = foldr1 lcm [a..b] 
 
-- 7ª solución
-- ===========
 
menorDivisible7 :: Integer -> Integer -> Integer
menorDivisible7 a = foldr1 lcm . enumFromTo a
 
-- Comparación de eficiencia
-- =========================
 
--   λ> menorDivisible 1 17
--   12252240
--   (18.63 secs, 15,789,475,488 bytes)
--   λ> menorDivisible2 1 17
--   12252240
--   (13.29 secs, 11,868,764,272 bytes)
--   λ> menorDivisible3 1 17
--   12252240
--   (0.00 secs, 114,688 bytes)
--   λ> menorDivisible4 1 17
--   12252240
--   (0.01 secs, 114,752 bytes)
--   λ> menorDivisible5 1 17
--   12252240
--   (0.01 secs, 110,640 bytes)
--   λ> menorDivisible6 1 17
--   12252240
--   (0.01 secs, 114,752 bytes)
--   λ> menorDivisible7 1 17
--   12252240
--   (0.00 secs, 110,912 bytes)
--   
--   λ> length (show (menorDivisible3 1 (10^5)))
--   43452
--   (1.54 secs, 2,021,887,000 bytes)
--   λ> length (show (menorDivisible4 1 (10^5)))
--   43452
--   (1.47 secs, 2,021,886,616 bytes)
--   λ> length (show (menorDivisible5 1 (10^5)))
--   43452
--   (0.65 secs, 2,009,595,568 bytes)
--   λ> length (show (menorDivisible6 1 (10^5)))
--   43452
--   (0.30 secs, 172,986,840 bytes)
--   λ> length (show (menorDivisible7 1 (10^5)))
--   43452
--   (0.30 secs, 172,986,920 bytes)
--   
--   λ> length (show (menorDivisible5 1 (2*10^5)))
--   86871
--   (2.47 secs, 7,989,147,304 bytes)
--   λ> length (show (menorDivisible6 1 (2*10^5)))
--   86871
--   (0.89 secs, 533,876,496 bytes)
--   λ> length (show (menorDivisible7 1 (2*10^5)))
--   86871
--   (0.88 secs, 533,875,608 bytes)

Pensamiento

Será el peor de los malos
bribón que olvide
su vocación de diablo.

Antonio Machado

Entre dos conjuntos

Se dice que un x número se encuentra entre dos conjuntos xs e ys si x es divisible por todos los elementos de xs y todos los elementos de zs son divisibles por x. Por ejemplo, 12 se encuentra entre los conjuntos {2, 6} y {24, 36}.

Definir la función

   entreDosConjuntos :: [Int] -> [Int] -> [Int]

tal que (entreDosConjuntos xs ys) es la lista de elementos entre xs e ys (se supone que xs e ys son listas no vacías de números enteros positivos). Por ejemplo,

   entreDosConjuntos [2,6] [24,36]     ==  [6,12]
   entreDosConjuntos [2,4] [32,16,96]  ==  [4,8,16]

Otros ejemplos

   λ> (xs,a) = ([1..15],product xs) 
   λ> length (entreDosConjuntos5 xs [a,2*a..10*a])
   270
   λ> (xs,a) = ([1..16],product xs) 
   λ> length (entreDosConjuntos5 xs [a,2*a..10*a])
   360

Soluciones

import Test.QuickCheck 
 
-- 1ª solución
-- ===========
 
entreDosConjuntos :: [Int] -> [Int] -> [Int]
entreDosConjuntos xs ys =
  [z | z <- [a..b]
     , and [z `mod` x == 0 | x <- xs]
     , and [y `mod` z == 0 | y <- ys]]
  where a = maximum xs
        b = minimum ys
 
-- 2ª solución
-- ===========
 
entreDosConjuntos2 :: [Int] -> [Int] -> [Int]
entreDosConjuntos2 xs ys =
  [z | z <- [a..b]
     , all (`divideA` z) xs
     , all (z `divideA`) ys]
  where a = mcmL xs
        b = mcdL ys
 
--    mcmL [2,3,18]  ==  18
--    mcmL [2,3,15]  ==  30
mcdL :: [Int] -> Int
mcdL [x]    = x
mcdL (x:xs) = gcd x (mcdL xs)
 
--    mcmL [12,30,18]  ==  6
--    mcmL [12,30,14]  ==  2
mcmL :: [Int] -> Int
mcmL [x]    = x
mcmL (x:xs) = lcm x (mcmL xs)
 
divideA :: Int -> Int -> Bool
divideA x y = y `mod` x == 0
 
-- 3ª solución
-- ===========
 
entreDosConjuntos3 :: [Int] -> [Int] -> [Int]
entreDosConjuntos3 xs ys =
  [z | z <- [a..b]
     , all (`divideA` z) xs
     , all (z `divideA`) ys]
  where a = mcmL2 xs
        b = mcdL2 ys
 
-- Definición equivalente
mcdL2 :: [Int] -> Int
mcdL2 = foldl1 gcd
 
-- Definición equivalente
mcmL2 :: [Int] -> Int
mcmL2 = foldl1 lcm
 
-- 4ª solución
-- ===========
 
entreDosConjuntos4 :: [Int] -> [Int] -> [Int]
entreDosConjuntos4 xs ys =
  [z | z <- [a,a+a..b]
     , z `divideA` b] 
  where a = mcmL2 xs
        b = mcdL2 ys
 
-- 5ª solución
-- ===========
 
entreDosConjuntos5 :: [Int] -> [Int] -> [Int]
entreDosConjuntos5 xs ys =
  filter (`divideA` b) [a,a+a..b]
  where a = mcmL2 xs
        b = mcdL2 ys
 
-- Equivalencia
-- ============
 
-- Para comprobar la equivalencia se define el tipo de listas no vacías
-- de números enteros positivos:
newtype ListaNoVaciaDePositivos = L [Int]
  deriving Show
 
-- genListaNoVaciaDePositivos es un generador de listas no vacióas de
-- enteros positivos. Por ejemplo,
--    λ> sample genListaNoVaciaDePositivos
--    L [1]
--    L [1,2,2]
--    L [4,3,4]
--    L [1,6,5,2,4]
--    L [2,8]
--    L [11]
--    L [13,2,3]
--    L [7,3,9,15,11,12,13,3,9,6,13,3]
--    L [16,2,11,10,6,5,16,4,1,15,9,11,8,15,2,15,7]
--    L [5,4,9,13,5,6,7]
--    L [7,4,6,12,2,11,6,14,14,13,14,11,6,2,18,8,16,2,13,9]
genListaNoVaciaDePositivos :: Gen ListaNoVaciaDePositivos
genListaNoVaciaDePositivos = do
  x  <- arbitrary
  xs <- arbitrary
  return (L (map ((+1) . abs) (x:xs)))
 
-- Generación arbitraria de listas no vacías de enteros positivos.
instance Arbitrary ListaNoVaciaDePositivos where
  arbitrary = genListaNoVaciaDePositivos
 
-- La propiedad es
prop_entreDosConjuntos_equiv ::
     ListaNoVaciaDePositivos
  -> ListaNoVaciaDePositivos
  -> Bool
prop_entreDosConjuntos_equiv (L xs) (L ys) =
  entreDosConjuntos xs ys == entreDosConjuntos2 xs ys &&
  entreDosConjuntos xs ys == entreDosConjuntos3 xs ys &&
  entreDosConjuntos xs ys == entreDosConjuntos4 xs ys &&
  entreDosConjuntos xs ys == entreDosConjuntos5 xs ys 
 
-- La comprobación es
--    λ> quickCheck prop_entreDosConjuntos_equiv
--    +++ OK, passed 100 tests.
 
-- Comparación de eficiencia
-- =========================
 
--    λ> (xs,a) = ([1..10],product xs) 
--    λ> length (entreDosConjuntos xs [a,2*a..10*a])
--    36
--    (5.08 secs, 4,035,689,200 bytes)
--    λ> length (entreDosConjuntos2 xs [a,2*a..10*a])
--    36
--    (3.75 secs, 2,471,534,072 bytes)
--    λ> length (entreDosConjuntos3 xs [a,2*a..10*a])
--    36
--    (3.73 secs, 2,471,528,664 bytes)
--    λ> length (entreDosConjuntos4 xs [a,2*a..10*a])
--    36
--    (0.01 secs, 442,152 bytes)
--    λ> length (entreDosConjuntos5 xs [a,2*a..10*a])
--    36
--    (0.00 secs, 374,824 bytes)

Referencia

Este ejercicio está basado en el problema Between two sets de HackerRank.

Pensamiento

Las razones no se transmiten, se engendran, por cooperación, en el diálogo.

Antonio Machado

Pares definidos por su MCD y su MCM

Definir las siguientes funciones

   pares  :: Integer -> Integer -> [(Integer,Integer)]
   nPares :: Integer -> Integer -> Integer

tales que

  • (pares a b) es la lista de los pares de números enteros positivos tales que su máximo común divisor es a y su mínimo común múltiplo es b. Por ejemplo,
     pares 3 3  == [(3,3)]
     pares 4 12 == [(4,12),(12,4)]
     pares 2 12 == [(2,12),(4,6),(6,4),(12,2)]
     pares 2 60 == [(2,60),(4,30),(6,20),(10,12),(12,10),(20,6),(30,4),(60,2)]
     pares 2 7  == []
     pares 12 3 == []
     length (pares 3 (product [3,5..91]))  ==  8388608
  • (nPares a b) es el número de pares de enteros positivos tales que su máximo común divisor es a y su mínimo común múltiplo es b. Por ejemplo,
     nPares 3 3   ==  1
     nPares 4 12  ==  2
     nPares 2 12  ==  4
     nPares 2 60  ==  8
     nPares 2 7   ==  0
     nPares 12 3  ==  0
     nPares 3 (product [3..3*10^4]) `mod` (10^12)  ==  477999992832
     length (show (nPares 3 (product [3..3*10^4])))  ==  977

Soluciones

import Data.Numbers.Primes (primeFactors)
import Data.List (genericLength, group, nub, sort, subsequences)
import Test.QuickCheck
 
-- 1ª definición de pares
-- ======================
 
pares1 :: Integer -> Integer -> [(Integer,Integer)]
pares1 a b = [(x,y) | x <- [1..b]
                    , y <- [1..b]
                    , gcd x y == a
                    , lcm x y == b]
 
-- 2ª definición de pares
-- ======================
 
pares2 :: Integer -> Integer -> [(Integer,Integer)]
pares2 a b = [(x,y) | x <- [a,a+a..b]
                    , y <- [a,a+a..b]
                    , gcd x y == a
                    , lcm x y == b]
 
-- Comparacioń de eficiencia
--    λ> length (pares1 3 (product [3,5..11]))
--    16
--    (95.12 secs, 86,534,165,528 bytes)
--    λ> length (pares2 3 (product [3,5..11]))
--    16
--    (15.80 secs, 14,808,762,128 bytes)
 
-- 3ª definición de pares
-- ======================
 
pares3 :: Integer -> Integer -> [(Integer,Integer)]
pares3 a b = [(x,y) | x <- [a,a+a..b]
                    , c `rem` x == 0
                    , let y = c `div` x
                    , gcd x y == a
                    ]
  where c = a * b
 
-- Comparacioń de eficiencia
--    λ> length (pares2 3 (product [3,5..11]))
--    16
--    (15.80 secs, 14,808,762,128 bytes)
--    λ> length (pares3 3 (product [3,5..11]))
--    16
--    (0.01 secs, 878,104 bytes)
 
-- 4ª definición de pares
-- ======================
 
-- Para la cuarta definición de pares se observa la relación con los
-- factores primos
--    λ> [(primeFactors x, primeFactors y) | (x,y) <- pares1 2 12]
--    [([2],[2,2,3]),([2,2],[2,3]),([2,3],[2,2]),([2,2,3],[2])]
--    λ> [primeFactors x | (x,y) <- pares1 2 12]
--    [[2],[2,2],[2,3],[2,2,3]]
--    λ> [primeFactors x | (x,y) <- pares1 2 60]
--    [[2],[2,2],[2,3],[2,5],[2,2,3],[2,2,5],[2,3,5],[2,2,3,5]]
--    λ> [primeFactors x | (x,y) <- pares1 6 60]
--    [[2,3],[2,2,3],[2,3,5],[2,2,3,5]]
--    λ> [primeFactors x | (x,y) <- pares1 2 24]
--    [[2],[2,3],[2,2,2],[2,2,2,3]]
-- Se observa que cada pare se obtiene de uno de los subconjuntos de los
-- divisores primos de b/a. Por ejemplo,
--    λ> (a,b) = (2,24)
--    λ> b `div` a
--    12
--    λ> primeFactors it
--    [2,2,3]
--    λ> group it
--    [[2,2],[3]]
--    λ> subsequences it
--    [[],[[2,2]],[[3]],[[2,2],[3]]]
--    λ> map concat it
--    [[],[2,2],[3],[2,2,3]]
--    λ> map product it
--    [1,4,3,12]
--    λ> [(a * x, b `div` x) | x <- it]
--    [(2,24),(8,6),(6,8),(24,2)]
-- A partir de la observación se construye la siguiente definición
 
pares4 :: Integer -> Integer -> [(Integer,Integer)]
pares4 a b
  | b `mod` a /= 0 = []
  | otherwise =
    [(a * x, b `div` x)
    | x <- map (product . concat)
               ((subsequences . group . primeFactors) (b `div` a))]
 
-- Nota. La función pares4 calcula el mismo conjunto que las anteriores,
-- pero no necesariamente en el mismo orde. Por ejemplo,
--    λ> pares3 2 60 
--    [(2,60),(4,30),(6,20),(10,12),(12,10),(20,6),(30,4),(60,2)]
--    λ> pares4 2 60 
--    [(2,60),(4,30),(6,20),(12,10),(10,12),(20,6),(30,4),(60,2)]
--    λ> pares3 2 60 == sort (pares4 2 60)
--    True
 
-- Comparacioń de eficiencia
--    λ> length (pares3 3 (product [3,5..17]))
--    64
--    (4.44 secs, 2,389,486,440 bytes)
--    λ> length (pares4 3 (product [3,5..17]))
--    64
--    (0.00 secs, 177,704 bytes)
 
-- Propiedades de equivalencia de pares
-- ====================================
 
prop_pares :: Integer -> Integer -> Property
prop_pares a b =
  a > 0 && b > 0 ==>
  all (== pares1 a b)
      [sort (f a b) | f <- [ pares2
                           , pares3
                           , pares4
                           ]]
 
prop_pares2 :: Integer -> Integer -> Property
prop_pares2 a b =
  a > 0 && b > 0 ==>
  all (== pares1 a (a * b))
      [sort (f a (a * b)) | f <- [ pares2
                                 , pares3
                                 , pares4
                                 ]]
 
-- La comprobación es
--    λ> quickCheckWith (stdArgs {maxSize=10}) prop_pares
--    +++ OK, passed 100 tests.
--    λ> quickCheckWith (stdArgs {maxSize=10}) prop_pares
--    +++ OK, passed 100 tests.
--    λ> quickCheckWith (stdArgs {maxSize=10}) prop_pares2
--    +++ OK, passed 100 tests.
 
-- 1ª definición de nPares
-- =======================
 
nPares1 :: Integer -> Integer -> Integer
nPares1 a b = genericLength (pares4 a b)
 
-- 2ª definición de nPares
-- =======================
 
nPares2 :: Integer -> Integer -> Integer
nPares2 a b = 2^(length (nub (primeFactors (b `div` a))))
 
-- Comparación de eficiencia
--    λ> nPares1 3 (product [3,5..91])
--    8388608
--    (4.68 secs, 4,178,295,920 bytes)
--    λ> nPares2 3 (product [3,5..91])
--    8388608
--    (0.00 secs, 234,688 bytes)
 
-- Propiedad de equivalencia de nPares
-- ===================================
 
prop_nPares :: Integer -> Integer -> Property
prop_nPares a b =
  a > 0 && b > 0 ==>
  nPares1 a (a * b) == nPares2 a (a * b)
 
-- La comprobación es
--    λ> quickCheckWith (stdArgs {maxSize=10}) prop_nPares
--    +++ OK, passed 100 tests.

Con mínimo común denominador

Los números racionales se pueden representar como pares de enteros:

   type Racional a = (a,a)

Definir la función

   reducida :: Integral a => [Racional a] -> [Racional a]

tal que (reducida xs) es la lista de los números racionales donde cada uno es igual al correspondiente elemento de xs y el denominador de todos los elementos de (reducida xs) es el menor número que cumple dicha condición; es decir, si xs es la lista

   [(x_1, y_1), ..., (x_n, y_n)]

entonces (reducida xs) es

   [(z_1, d), ..., (z_n, d)]

tales que

   z_1/d = x_1/y_1, ..., z_n/d = x_n/y_n

y d es el menor posible. Por ejemplo,

   reducida [(1,2),(1,3),(1,4)]  ==  [(6,12),(4,12),(3,12)]
   reducida [(1,2),(1,3),(6,4)]  ==  [(3,6),(2,6),(9,6)]
   reducida [(-7,6),(-10,-8)]    ==  [(-14,12),(15,12)]
   reducida [(8,12)]             ==  [(2,3)]

Soluciones

type Racional a = (a,a) 
 
reducida :: Integral a => [Racional a] -> [Racional a]
reducida xs = 
    [(x * (m `div` y), m) | (x,y) <- ys]
    where ys = map fraccionReducida xs
          m  = mcm [y | (_,y) <- ys]
 
-- (fraccionReducida r) es el número racional igual a r con menor
-- denominador positivo. Por ejemplo,
--    fraccionReducida ( 6, 10)  ==  ( 3,5)
--    fraccionReducida (-6, 10)  ==  (-3,5)
--    fraccionReducida ( 6,-10)  ==  (-3,5)
--    fraccionReducida (-6,-10)  ==  ( 3,5)
--    fraccionReducida ( 3,  5)  ==  ( 3,5)
fraccionReducida :: Integral a => (a,a) -> (a,a)
fraccionReducida (x,y) =
    (s * x1 `div` m, y1 `div` m)
    where s  = signum x * signum y      
          x1 = abs x
          y1 = abs y
          m  = gcd x1 y1
 
-- (mcm xs) es el mínimo común múltiplo de xs. Por ejemplo,
--    mcm [2,6,10]  ==  30
mcm :: Integral a => [a] -> a
mcm = foldl lcm 1