Menu Close

Etiqueta: inRange

Elementos de una matriz con algún vecino menor

Las matrices pueden representarse mediante tablas cuyos índices son pares de números naturales. Su tipo se define por

   type Matriz = Array (Int,Int) Int

Por ejemplo, la matriz

   |9 4 6 5|
   |8 1 7 3|
   |4 2 5 4|

se define por

   ej :: Matriz
   ej = listArray ((1,1),(3,4)) [9,4,6,5,8,1,7,3,4,2,5,4]

Los vecinos de un elemento son los que están a un paso en la misma fila, columna o diagonal. Por ejemplo, en la matriz anterior, el 1 tiene 8 vecinos (el 9, 4, 6, 8, 7, 4, 2 y 5) pero el 9 sólo tiene 3 vecinos (el 4, 8 y 1).

Definir la función

   algunoMenor :: Matriz -> [Int]

tal que (algunoMenor p) es la lista de los elementos de p que tienen algún vecino menor que él. Por ejemplo,

   algunoMenor ej == [9,4,6,5,8,7,4,2,5,4]

pues sólo el 1 y el 3 no tienen ningún vecino menor en la matriz.

Soluciones

import Data.Array (Array, (!), bounds, indices, inRange, listArray)
import Test.QuickCheck (Arbitrary, Gen, arbitrary, chooseInt, quickCheck,
                        vectorOf)
 
type Matriz = Array (Int,Int) Int
 
ej :: Matriz
ej = listArray ((1,1),(3,4)) [9,4,6,5,8,1,7,3,4,2,5,4]
 
type Pos = (Int,Int)
 
-- 1ª solución
-- ===========
 
algunoMenor1 :: Matriz -> [Int]
algunoMenor1 a =
  [a!p| p <- indices a,
        any (< a!p) (vecinos1 a p)]
 
-- (vecinos q p) es la lista de los vecinos en la matriz a de la
-- posición p. Por ejemplo,
--    vecinos1 ej (2,2)  ==  [9,4,6,8,7,4,2,5]
--    vecinos1 ej (1,1)  ==  [4,8,1]
vecinos1 :: Matriz -> Pos -> [Int]
vecinos1 a p =
  [a!p' | p' <- posicionesVecinos1 a p]
 
-- (posicionesVecinos a p) es la lista de las posiciones de los
-- vecino de p en la matriz a. Por ejemplo,
--    λ> posicionesVecinos1 3 3 (2,2)
--    [(1,1),(1,2),(1,3),(2,1),(2,3),(3,1),(3,2),(3,3)]
--    λ> posicionesVecinos1 3 3 (1,1)
--    [(1,2),(2,1),(2,2)]
posicionesVecinos1 :: Matriz -> Pos -> [Pos]
posicionesVecinos1 a (i,j) =
  [(i+di,j+dj) | (di,dj) <- [(-1,-1),(-1,0),(-1,1),
                             ( 0,-1),       ( 0,1),
                             ( 1,-1),( 1,0),( 1,1)],
                 inRange (bounds a) (i+di,j+dj)]
 
-- 2ª solución
-- ===========
 
algunoMenor2 :: Matriz -> [Int]
algunoMenor2 a =
  [a!p | p <- indices a,
         any (<a!p) (vecinos2 p)]
  where
    vecinos2 p =
      [a!p' | p' <- posicionesVecinos2 p]
    posicionesVecinos2 (i,j) =
      [(i+di,j+dj) | (di,dj) <- [(-1,-1),(-1,0),(-1,1),
                                 ( 0,-1),       ( 0,1),
                                 ( 1,-1),( 1,0),( 1,1)],
                     inRange (bounds a) (i+di,j+dj)]
 
-- 3ª solución
-- ===========
 
algunoMenor3 :: Matriz -> [Int]
algunoMenor3 a =
  [a!p | p <- indices a,
         any (<a!p) (vecinos3 p)]
  where
    vecinos3 p =
      [a!p' | p' <- posicionesVecinos3 p]
    posicionesVecinos3 (i,j) =
      [(i',j') | i' <- [i-1..i+1],
                 j' <- [j-1..j+1],
                 (i',j') /= (i,j),
                 inRange (bounds a) (i',j')]
 
-- 4ª solución
-- ===========
 
algunoMenor4 :: Matriz -> [Int]
algunoMenor4 a =
  [a!p | p <- indices a,
         any (<a!p) (vecinos4 p)]
  where
    vecinos4 p =
      [a!p' | p' <- posicionesVecinos4 p]
    posicionesVecinos4 (i,j) =
      [(i',j') | i' <- [max 1 (i-1)..min m (i+1)],
                 j' <- [max 1 (j-1)..min n (j+1)],
                 (i',j') /= (i,j)]
      where (_,(m,n)) = bounds a
 
 
-- 5ª solución
-- ===========
 
algunoMenor5 :: Matriz -> [Int]
algunoMenor5 a =
  [a!p | p <- indices a,
         any (<a!p) (vecinos5 p)]
  where
    vecinos5 p =
      [a!p' | p' <- posicionesVecinos5 p]
    posicionesVecinos5 (i,j) =
      [(i-1,j-1) | i > 1, j > 1] ++
      [(i-1,j)   | i > 1]        ++
      [(i-1,j+1) | i > 1, j < n] ++
      [(i,j-1)   | j > 1]        ++
      [(i,j+1)   | j < n]        ++
      [(i+1,j-1) | i < m, j > 1] ++
      [(i+1,j)   | i < m]        ++
      [(i+1,j+1) | i < m, j < n]
      where (_,(m,n)) = bounds a
 
-- ---------------------------------------------------------------------
 
-- Comprobación de equivalencia
-- ============================
 
newtype Matriz2 = M Matriz
  deriving Show
 
-- Generador de matrices arbitrarias. Por ejemplo,
--    λ> generate matrizArbitraria
--    M (array ((1,1),(3,4))
--             [((1,1),18),((1,2),6), ((1,3),-23),((1,4),-13),
--              ((2,1),-2),((2,2),22),((2,3),-25),((2,4),-5),
--              ((3,1),2), ((3,2),16),((3,3),-15),((3,4),7)])
matrizArbitraria :: Gen Matriz2
matrizArbitraria = do
  m  <- chooseInt (1,10)
  n  <- chooseInt (1,10)
  xs <- vectorOf (m*n) arbitrary
  return (M (listArray ((1,1),(m,n)) xs))
 
-- Matriz es una subclase de Arbitrary.
instance Arbitrary Matriz2 where
  arbitrary = matrizArbitraria
 
-- La propiedad es
prop_algunoMenor :: Matriz2 -> Bool
prop_algunoMenor (M p) =
  all (== algunoMenor1 p)
      [algunoMenor2 p,
       algunoMenor3 p,
       algunoMenor4 p,
       algunoMenor5 p]
 
-- La comprobación es
--    λ> quickCheck prop_algunoMenor
--    +++ OK, passed 100 tests.
 
-- Comparación de eficiencia
-- =========================
 
-- La comparación es
--    λ> maximum (algunoMenor1 (listArray ((1,1),(600,800)) [0..]))
--    479999
--    (2.20 secs, 1,350,075,240 bytes)
--    λ> maximum (algunoMenor2 (listArray ((1,1),(600,800)) [0..]))
--    479999
--    (2.24 secs, 1,373,139,968 bytes)
--    λ> maximum (algunoMenor3 (listArray ((1,1),(600,800)) [0..]))
--    479999
--    (2.08 secs, 1,200,734,112 bytes)
--    λ> maximum (algunoMenor4 (listArray ((1,1),(600,800)) [0..]))
--    479999
--    (2.76 secs, 1,287,653,136 bytes)
--    λ> maximum (algunoMenor5 (listArray ((1,1),(600,800)) [0..]))
--    479999
--    (1.67 secs, 953,937,600 bytes)

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Comportamiento del último dígito en primos consecutivos

El pasado 11 de marzo se ha publicado el artículo Unexpected biases in the distribution of consecutive primes en el que muestra que los números primos repelen a otros primos que terminan en el mismo dígito.

La lista de los últimos dígitos de los 30 primeros números es

   [2,3,5,7,1,3,7,9,3,9,1,7,1,3,7,3,9,1,7,1,3,9,3,9,7,1,3,7,9,3]

Se observa que hay 6 números que su último dígito es un 1 y de sus consecutivos 4 terminan en 3 y 2 terminan en 7.

Definir la función

   distribucionUltimos :: Int -> M.Matrix Integer

tal que (distribucionUltimos n) es la matriz cuyo elemento (i,j) indica cuántos de los n primeros números primos terminan en i y su siguiente número primo termina en j. Por ejemplo,

   λ> distribucionUltimos 30
   ( 0 0 4 0 0 0 2 0 0 )
   ( 0 0 1 0 0 0 0 0 0 )
   ( 0 0 0 0 1 0 4 0 4 )
   ( 0 0 0 0 0 0 0 0 0 )
   ( 0 0 0 0 0 0 1 0 0 )
   ( 0 0 0 0 0 0 0 0 0 )
   ( 4 0 1 0 0 0 0 0 2 )
   ( 0 0 0 0 0 0 0 0 0 )
   ( 2 0 3 0 0 0 1 0 0 )
 
   λ> distribucionUltimos (10^5)
   ( 4104    0 7961    0    0    0 8297    0 4605 )
   (    0    0    1    0    0    0    0    0    0 )
   ( 5596    0 3604    0    1    0 7419    0 8387 )
   (    0    0    0    0    0    0    0    0    0 )
   (    0    0    0    0    0    0    1    0    0 )
   (    0    0    0    0    0    0    0    0    0 )
   ( 6438    0 6928    0    0    0 3627    0 8022 )
   (    0    0    0    0    0    0    0    0    0 )
   ( 8830    0 6513    0    0    0 5671    0 3995 )

Nota: Se observa cómo se «repelen» ya que en las filas del 1, 3, 7 y 9 el menor elemento es el de la diagonal.

Soluciones

import Data.Numbers.Primes
import Data.Array
import qualified Data.Matrix as M
 
-- (ultimo n) es el último dígito de n.    
ultimo :: Integer -> Integer
ultimo n = n `mod` 10
 
-- ultimos es la lista de el último dígito de los primos.
--    λ> take 20 ultimos
--    [2,3,5,7,1,3,7,9,3,9,1,7,1,3,7,3,9,1,7,1]
ultimos :: [Integer]
ultimos = map ultimo primes
 
-- ultimosConsecutivos es la lista de los últimos dígitos de los primos
-- consecutivos. 
--    λ> take 10 ultimosConsecutivos
--    [(2,3),(3,5),(5,7),(7,1),(1,3),(3,7),(7,9),(9,3),(3,9),(9,1)]
ultimosConsecutivos :: [(Integer,Integer)]
ultimosConsecutivos = zip ultimos (tail ultimos)
 
-- (histograma r is) es el vector formado contando cuantas veces
-- aparecen los elementos del rango r en la lista de índices is. Por
-- ejemplo, 
--    ghci> histograma (0,5) [3,1,4,1,5,4,2,7]
--    array (0,5) [(0,0),(1,2),(2,1),(3,1),(4,2),(5,1)]
histograma :: (Ix a, Num b) => (a,a) -> [a] -> Array a b
histograma r is = 
    accumArray (+) 0 r [(i,1) | i <- is, inRange r i]
 
distribucionUltimos :: Int -> M.Matrix Integer
distribucionUltimos n =
    M.fromList 9 9 (elems (histograma ((1,1),(9,9)) (take n ultimosConsecutivos)))

Solución en Maxima

distribucionUltimos (n) := block (
  [r : zeromatrix (9,9),
   xs : ultimos (n),
   i, j],
  unless length (xs) < 2 do
    ( i : first (xs),
      j : second (xs),
      r[i,j] : 1 + r[i,j],
      xs : rest (xs)),
  r)$
 
/* ultimos(n) es la lista del último dígito de los n primeros primos.
      (%i5) ultimos (30);
      (%o5) [2,3,5,7,1,3,7,9,3,9,1,7,1,3,7,3,9,1,7,1,3,9,3,9,7,1,3,7,9,3,7]
*/
ultimos (n) := block ([r:[], p:2],
  for k from 0 thru n do
    ( r : cons (mod (p,10), r),
      p : next_prime (p) ),
  reverse (r))$